首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   99篇
  国内免费   41篇
化学   391篇
晶体学   5篇
力学   90篇
综合类   7篇
数学   312篇
物理学   447篇
  2024年   1篇
  2023年   20篇
  2022年   41篇
  2021年   18篇
  2020年   49篇
  2019年   46篇
  2018年   31篇
  2017年   33篇
  2016年   36篇
  2015年   44篇
  2014年   66篇
  2013年   76篇
  2012年   58篇
  2011年   60篇
  2010年   57篇
  2009年   95篇
  2008年   87篇
  2007年   77篇
  2006年   66篇
  2005年   64篇
  2004年   45篇
  2003年   27篇
  2002年   17篇
  2001年   18篇
  2000年   20篇
  1999年   17篇
  1998年   27篇
  1997年   9篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   7篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有1252条查询结果,搜索用时 31 毫秒
21.
Investigations have been performed on convective heat transfer in water flowing through mini-channels using the non intrusive technique of laser interferometry coupled with digital image processing. Optical glass channels, fabricated with metallic heating surfaces, were studied using a Mach-Zehnder interferometer configuration. Fringe patterns captured using a high-sensitivity CCD camera were analyzed digitally based on a calculation method developed for the liquid medium. Results of parametric studies were compared and contrasted with relevant theoretical solutions from the literature. Indication of the onset of turbulence at Reynolds numbers smaller than the conventional transition Reynolds number for large channels has also been noticed in the experimental investigation.  相似文献   
22.
To overcome bad prognosis of patients with heart failure and the lack of organ donors, cardiac tissue engineering has developed as a biomimetic approach to repair, replace, and regenerate the damaged cardiac tissue. During the past decade years, researchers are devoted to find different natural and/or synthetic materials that can build appropriate physical structures to contain and organize implanted cells. In this study, we present a new method for primary neonatal rat cardiomyocytes culture in vitro using alginate/collagen/chitosan hydrogel. To investigate the feasibility of this material as scaffold for cardiac myocytes, neonatal rat ventricular myocytes were isolated and encapsulated in alginate-based beads cross-linked with calcium ion. The growth of cells was evaluated by staining with α-Sarcomeric actin (α-SCA) and Troponin T type 2 (TNNT2), and the viability of cardiomyocytes was studied in vitro by assessing the expression levels of several cardiac ion channels, including CACNL1A1, Connexin 43 and SCN5A. The results showed a significant increase in cardiac myocytes number, and the expression levels of CACNL1A1, Connexin 43 (Cx43) were up-regulated significantly except SCN5A, as compared with two-dimensional cultures. Moreover, extracellular matrix produced by the seeded cells themselves was observed by staining with fibronectin. Taken together, these findings indicate that this alginate/collagen/chitosan hydrogel bead is suitable for supporting the growth and retaining the morphologic and electrophysiologic characteristics of primary cultured rat cardiac muscle cells.  相似文献   
23.
蒋鑫  李华  朱辉  刘杰 《光子学报》2016,(3):113-117
建立了蒸发器支撑板板孔精密测量系统,并提出了基于边缘约束条件的轮廓参量测量方法.首先采用图像处理技术将待测目标转化为二维离散坐标点,计算其最小外接矩形并对轮廓进行预定位;然后将轮廓分割成相互重合的"扩展邻域轮廓",建立以曲率角为原则的边缘约束算法对各轮廓段精确定界,实现对轮廓参量的精密测量.实验和误差分析表明,该系统测量准确度优于0.02mm,对具有复杂轮廓的零件参量测量有参考价值.  相似文献   
24.
25.
A generalization of the Mattis-Nam model Mattis and Nam (1972) [7], which takes into account a correlated hopping and pairing of electrons, is proposed, its exact solution is obtained. In the framework of the model the stability of the zero energy Majorana fermions localized at the boundaries is studied in the chain in which electrons interact through both the on-site Hubbard interaction and the correlated hopping and pairing. The ground-state phase diagram of the model is calculated, the region of existence of topological states is determined. It is shown that low-energy excitations destroy bonds between electrons in the chain, leading to an insulator state.  相似文献   
26.
Modification of proton conductive channels (PCCs) in Nafion has been achieved with the assistance of 3, 4‐dimethylbenzaldehyde (DMBA). During annealing, ionic clusters develop from small isolated spheres (1.72 nm) to wide continuous channels (5.15 nm), and the crystallinity of Nafion/DMBA membranes is also improved from 17% to 32% as shown by X‐ray diffraction. Molecular dynamic simulation reveals that hydrogen bonding and hydrophobic interaction between DMBA and Nafion work synergistically to achieve better phase separation. The morphology–property relationship shows that, versus various PCCs width, the corresponding proton conductivities vary greatly from 0.079 to 0.139 S/cm at 80 °C. By carefully tuning the width of PCCs, the proton conductivity shows an improvement of 22–34% as compared with pristine Nafion. A significant enhancement on the maximum power density is achieved for the membrane electrode assembly on Nafion/DMBA‐8h (as high as 1018 mW/cm?2), yielding an enhancement of 39% on pristine Nafion‐8h (730 mW/cm?2). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 52, 1107–1117  相似文献   
27.
Lithium (Li) metal has attracted significant attention in areas that range from basic research to various commercial applications due to its high theoretical specific capacity (3860 mA h g−1) and low electrochemical potential (−3.04 vs. standard hydrogen electrode). However, dendrites often form on the surfaces of Li metal anodes during cycling and thus lead to battery failure and, in some cases, raise safety concerns. To overcome this problem, a variety of approaches that vary the electrolyte, membrane, and/or anode have been proposed. Among these efforts, the use of three-dimensional frameworks as Li hosts, which can homogenize and minimize the current density at the anode surface, is an effective approach to suppress the formation of Li dendrites. Herein, we describe the development of using carbon-based materials as Li hosts. While these materials can be fabricated into a variety of porous structures, they have a number of intrinsic advantages including low costs, high specific surface areas, high electrical conductivities, and wide electrochemical stabilities. After briefly summarizing the formation mechanisms of Li dendrites, various methods for controlling structural and surface chemistry will be described for different types of carbon-based materials from the viewpoint of improving their performance as Li hosts. Finally, we provide perspective on the future development of Li host materials needed to meet the requirements for their use in flexible and wearable devices and other contemporary energy storage techniques.  相似文献   
28.
1D nanochannels modified with responsive molecules are fabricated to replicate gating functionalities of biological ion channels, but gating effects are usually weak because small molecular gates cannot efficiently block the large channels in the closed states. Now, 3D metal–organic framework (MOF) sub‐nanochannels (SNCs) confined with azobenzene (AZO) molecules achieve efficient light‐gating functionalities. The 3D MOFSNCs consisting of a MOF UiO66 with ca. 9–12 Å cavities connected by ca. 6 Å triangular windows work as angstrom‐scale ion channels, while confined AZO within the MOF cavities function as light‐driven molecular gates to efficiently regulate the ion flux. The AZO‐MOFSNCs show good cyclic gating performance and high on–off ratios up to 17.8, an order of magnitude higher than ratios observed in conventional 1D AZO‐modified nanochannels (1.3–1.5). This work provides a strategy to develop highly efficient switchable ion channels based on 3D porous MOFs and small responsive molecules.  相似文献   
29.
《Current Applied Physics》2014,14(3):287-293
Lumped parameter models for describing dynamics of the plasma channel in a parallel-plate plasma gun are compared with the experimental results obtained from two plasma guns with different rail geometries. Comparison between the experiments and the numerical calculations reveals that the lumped parameter models can be utilized to describe the dynamic motion of the plasma channel quite well. Parametric study shows that minimizing the line inductance and increasing the charging voltage on a capacitor as well as minimizing the gas injection time for reducing the mass of the plasma channel are the key factors to increase the flow velocity of the plasma jet ejected from the plasma gun.  相似文献   
30.
Polytheonamide B ( 1 ) is a natural peptide that displays potent cytotoxicity against P388 mouse leukemia cells (IC50=0.098 nm ). Linear 48‐mer 1 is known to form monovalent cation channels on binding to lipid bilayers. We previously developed a fully synthetic route to 1 , and then achieved the design and synthesis of a structurally simplified analogue of 1 , namely, dansylated polytheonamide mimic 2 . Although the synthetically more accessible 2 was found to emulate the channel function of 1 , its cytotoxicity was decreased 120‐fold. Herein, the chemical preparation and biological evaluation of seven analogues 3 – 9 of 2 are reported. Compounds 3 – 9 were modified at their N terminus and/or the side chain of residue 44 of 2 to alter their physicochemical properties. The total synthesis of 3 – 9 was accomplished in a unified fashion by a combination of solid‐phase and solution‐phase chemistry. Systematic evaluation of the hydrophobicities, single‐channel currents, ion‐exchange activities, and cytotoxicities of 3 – 9 revealed that their hydrophobicities are correlated with the total magnitude of ion exchange and determine their cytotoxic potency. Consequently, the most hydrophobic analogue 9 exhibited the lowest IC50 value, which is comparable to that of 1 . Therefore, these results clarified that the bioactivity of the polytheonamide‐based peptides can be rationally controlled by changing their hydrophobicity at the N and C termini of the 48‐amino‐acid sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号