首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  国内免费   1篇
化学   30篇
力学   1篇
综合类   1篇
数学   1篇
物理学   4篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
31.
32.
Protein capturing on polymeric substrate of microfluidic devices is a key factor for the fabrication of immunoassay with high sensitivity. In this work, simple and versatile technique of electrospinning was used to produce electrospun nanofibrous membranes (e.NFMs) with high surface area as a substrate for microfluidic‐based immunoassay to increase sensitivity. It was found that the simultaneous use of e.NFM and 1‐Ethylethyl‐3‐(3‐dimethylaminopropyl)‐carbodiimide/N‐Hydroxysuccinimide hydroxysuccinimide as coupling agent has synergic effect on antigen immobilization onto the microchannels. It was found that the oxygen plasma technique for the creation of oxygen containing functional group like carboxyl and hydroxyl causes extreme leakage of solution through the microchannels. Thus, due to capillary effect, it is impossible to use hydrophilic substrate to modify microchannels. In order to compensate this problem, it is propose to utilize other type of polymer for the fabrication of nanofiber to answer this important question that if it is possible to enhance the sensitivity of immunoassay just by changing the polymer type? For this purpose, four different polymers, namely, polycaprolactone, poly lactic‐co‐glycolic acid, poly L‐lactic acid, and polyethersolfone were used as the based material for e.NFM fabrication. Results showed that compared with plain poly (dimethylsiloxane) surface of microchannels, poly lactic‐co‐glycolic acidand poly L‐lactic acid, which inherently contain end‐group of carboxyl in their chemical structure, can improve the protein immobilization, which leads to immunoassay signal enhancement through 1‐ethyl‐3‐(3‐dimethylaminopropyl)‐carbodiimide/N‐hydroxysuccinimide coupling chemistry, significantly.  相似文献   
33.
In the present study, a new turbulent premixed combustion model is proposed by integrating the Coherent Flame Model with the modified eddy dissipation concept, and relating the fine structure mass fraction to the flame surface density. First, experimental results of turbulent flame speed available from literature are compared with the predicted results at different turbulence intensities to validate the flame surface density model. It is observed that the model is able to predict the turbulent burning speeds accurately. Then, a comprehensive validation is carried out utilizing data on a turbulent lifted methane flame issuing into a vitiated co-flow. Detailed comparison of temperature and species concentrations between experiment and simulation is performed at different heights of the flame. Overall, the model is found to predict both the spatial variation and peak values of the scalars at various heights satisfactorily.  相似文献   
34.
A unique analytical method using nanoparticles and laser-induced fluorescence microscopy (LIFM) was developed to determine enrofloxacin in this work. For sample pretreatment, two different kinds of particles, i.e., synthesized dye-doped core–shell silica nanoparticles and magnetic micro-particles (MPs), were used for fluorescent tagging and concentrating the enrofloxacin, respectively. The antibody of enrofloxacin was immobilized on the synthesized FITC-doped core–shell nanoparticles, and the enrofloxacin target was extracted by the MPs. At this moment, the average number of antibodies on each core–shell silica nanoparticle was ∼0.9, which was determined by the fluorescence ratiometric method. The described method was demonstrated for a meat sample to determine enrofloxacin using LIFM, and the result was compared with enzyme-linked immunosorbent assay (ELISA). The developed technique allowed the simplified analytical procedure, improved the detection limit about 54-fold compared to ELISA.  相似文献   
35.
Six polyclonal antisera to chloramphenicol (CAP) were successfully raised in camels, donkeys and goats. As a comparison of sensitivity, IC50 values ranged from 0.3 ng mL−1 to 5.5 ng mL−1 by enzyme-linked immunosorbent assay (ELISA) and from 0.7 ng mL−1 to 1.7 ng mL−1 by biosensor assay. The introduction of bovine milk extract improved the sensitivity of four of the antisera by ELISA and two by biosensor assay; a reduction in sensitivity of the remaining antisera ranged by a factor of 1.1-2.6. Porcine kidney extract reduced the sensitivity of all the antisera by a factor ranging from 1.1 to 7 by ELISA and a factor of 1.5 to 4 by biosensor. A low cross-reactivity with thiamphenicol (TAP) and florfenicol (FF) was displayed by antiserum G2 (1.2% and 18%, respectively) when a homologous ELISA assay format was employed. No cross-reactivity was displayed by any of the antisera when a homologous biosensor assay format was employed. Switching to a heterologous ELISA format prompted three of the antisera to display more significant cross-reactivity with TAP and FF (53% and 82%, respectively, using D1). The heterologous biosensor assay also increased the cross-reactivity of D1 for TAP and FF (56% and 129%, respectively) and of one other antiserum (G1) to a lesser degree. However, unlike the ELISA, the heterologous biosensor assay produced a substantial reduction in sensitivity (by a factor of 6 for D1).  相似文献   
36.
通过酰氯化法与碳二亚胺缩合法(EDC/NHS)制备氨基化聚乙二醇(PEG1500N)修饰的多壁碳纳米管(MWNTs)并采用FTIR、Raman、TEM、原子力显微镜(AFM)、TGA-DTA-DSC、UV-Vis进行表征与分析。实验结果发现:两种方法PEG1500N都能很好地修饰MWNTs,但EDC/NHS缩合法采用更短的反应时间(反应1 d),达到了更好的接枝效果。EDC/NHS缩合法提高了碳管上羧基的利用率,接枝率大大提高。TGA-DTA分析表明缩合法接枝率为30%,而酰氯化法(反应4 d)为15%。UV-Vis分析表明EDC/NHS缩合法得到的产物溶解性也更好,溶解度由1.19 mg·mL-1(酰氯化法得到的产物的溶解度)提高到2 mg·mL-1以上。  相似文献   
37.
Active bead-linked immunoassay on protein microarrays   总被引:1,自引:0,他引:1  
Protein microarrays are becoming a powerful tool in proteome, biochemical, and clinical studies. In addition to the quality of arrayed immobilized probe molecules, sensitivity of the microarray-based assay is highly dependent on the detection technique. Here we suggest four simple techniques for rapid detection of analytes bound to protein microarrays. The techniques employ functionalized magnetic and non-magnetic beads moved to, from, or along the array surface by external forces. In contrast to other labeling techniques actively controlled physical labels: (i) make detection extremely fast to allow microarray reading in seconds; (ii) provide a low background due to active removal of weakly bound beads; and (iii) provide a highly sensitive detection, since one antigen-antibody bond is capable of holding bead immobilized on the array surface. In combination with the electrophoretically assisted active immunoassay we described recently such active reading allows to reduce total indirect immunoassay time to 7-10 min while having sensitivity in the femtomolar concentration range. High speed, sensitivity, and specificity make active bead-linked detection an ideal choice in rapid high-throughput screening and in emergency diagnostics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号