首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3352篇
  免费   487篇
  国内免费   310篇
化学   3624篇
晶体学   1篇
力学   35篇
综合类   7篇
数学   147篇
物理学   335篇
  2024年   13篇
  2023年   139篇
  2022年   148篇
  2021年   252篇
  2020年   245篇
  2019年   190篇
  2018年   142篇
  2017年   152篇
  2016年   251篇
  2015年   215篇
  2014年   263篇
  2013年   290篇
  2012年   226篇
  2011年   246篇
  2010年   157篇
  2009年   189篇
  2008年   191篇
  2007年   171篇
  2006年   121篇
  2005年   99篇
  2004年   82篇
  2003年   57篇
  2002年   36篇
  2001年   27篇
  2000年   21篇
  1999年   32篇
  1998年   27篇
  1997年   25篇
  1996年   16篇
  1995年   34篇
  1994年   28篇
  1993年   10篇
  1992年   14篇
  1991年   12篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有4149条查询结果,搜索用时 15 毫秒
991.
In this work, an electrochemical DNA‐based sensor was developed for the detection of the interaction between the anticonvulsant compounds 2‐phthalimido‐N‐substituted phenylethanesulfonamides (PMPES‐derivatives) and 24‐mer short DNA sequences by using differential pulse voltammetry (DPV) based on both compound and guanine oxidation signals at the renewable carbon graphite electrode (CGE) surface. The influence of compounds on DNA showed differences depending on the nature and position of the substituent on the N‐phenyl ring. Compounds bearing 3‐methoxy, 4‐chloro and 2,6‐dimethyl substituents bind to single stranded probe DNA more strongly than the other derivatives of PMPES. Thus, these compounds were evaluated for use as an electrochemical hybridization label (indicator).  相似文献   
992.
Vitamin B1‐selective electrodes with PVC membrane were developed that contain ion associates of vitamin B1 with an inorganic anion, BiI4?, and an organic anion, brilliant yellow, as electrode‐active substances. The linearity ranges of the electrode function are 1.0×10?5–1.0×10?2 and 1.0×10?4–1.0×10?2 M, the electrode function slopes are 33.0±1.0 and 33.1±1.1 mV decade?1, the detection limits are 5.5×10?6 and 8.3×10?5 M for BiI4? and brilliant yellow respectively. The working range of pH is 5–12. The efficiency of the use of electrodes for the vitamin B1 content control in multivitamin pharmaceutical preparations was shown by direct potentiometry and potentiometric titration methods.  相似文献   
993.
Nanosize hydrogels (nanogels) are polymer nanoparticles with three‐dimensional networks, formed by chemical and/or physical cross‐linking of polymer chains. Recently, various nanogels have been designed, with a particular focus on biomedical applications. In this review, we describe recent progress in the synthesis of nanogels and nanogel‐integrated hydrogels (nanogel cross‐linked gels) for drug‐delivery systems (DDS), regenerative medicine, and bioimaging. We also discuss chaperone‐like functions of physical cross‐linking nanogel (chaperoning engineering) and organic‐inorganic hybrid nanogels. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.201000008  相似文献   
994.
Amphiphilic macromolecules (AMs) have unique branched hydrophobic domains attached to linear PEG chains. AMs self‐assemble in aqueous solution to form micelles that are hydrolytically stable in physiological conditions (37 °C, pH 7.4) over 4 weeks. Evidence of AM biodegradability was demonstrated by complete AM degradation after 6 d in the presence of lipase. Doxorubicin (DOX) was chemically conjugated to AMs via a hydrazone linker to form DOX–AM conjugates that self‐assembled into micelles in aqueous solution. The conjugates were compared with DOX‐loaded AM micelles (i.e., physically loaded DOX) on DOX content, micellar sizes and in vitro cytotoxicity. Physically encapsulated DOX loading was higher (12 wt.‐%) than chemically bound DOX (6 wt.‐%), and micellar sizes of DOX‐loaded AMs (≈16 nm) were smaller than DOX–AMs (≈30 nm). In vitro DOX release from DOX–AM conjugates was faster at pH 5.0 (100%) compared to pH 7.4 (78%) after 48 h, 37 °C. Compared to free DOX and physically encapsulated DOX, chemically bound DOX had significantly higher cytotoxicity at 10?7 M DOX dose against human hepatocellular carcinoma cells after 72 h. Overall, DOX–AM micelles showed promising characteristics as stable, biodegradable DOX nanocarriers.

  相似文献   

995.
CD3ac, an uncharged and strongly hydrophobic 10 amino acid peptide (Ac-LK(Ac)-LK(Ac)-LK(Ac)-LW-DL-LW-DL-LW-DL-LW-NH2) was synthesized and purified. The peptide readily dissolves in ethanol and--upon solvent exchange to water--assembles into solid spherical particles with diameters of around 500 nm and low size-polydispersity. CD3ac self-assembles in a convenient one-step-process in the absence of a templating two-phase solvent system or any other templating agents. Circular dichroism reveals a gramicidin-like secondary structure, which can be attributed to the presence of D-leucine, whereas LCD3ac, a peptide of identical constitution yet composed entirely of L-amino acids precipitates amorphously. The unacetylated derivative of LCD3ac (LCD3) displays α-helical character in circular dichroism. During the process of bead formation, CD3ac can take up and enrich water-soluble and--insoluble cargo compounds, which is exemplified by the encapsulation of rose bengal (RB) and 5-carboxy-fluorescein (CF), two xanthene derivatives. We confirmed their presence in CD3ac beads by confocal fluorescence microscopy and quantified the encapsulation efficiency by absorption measurements of dissolved RB-containing peptide bead suspensions. Loaded CD3ac beads consist of up to 40 mol-% RB, which corresponds to a logarithmic partition coefficient of 2.95. To the best of our knowledge CD3ac is the first peptide synthesized by Fmoc chemistry which forms solid particles in the nano- and micrometer size range and holds promise for drug delivery applications.  相似文献   
996.
MH, a semisynthetic tetracycline antibiotic with promising neuroprotective properties, was encapsulated into PIC micelles of CMD‐PEG as a potential new formulation of MH for the treatment of neuroinflammatory diseases. PIC micelles were prepared by mixing solutions of a Ca2+/MH chelate and CMD‐PEG copolymer in a Tris‐HCl buffer. Light scattering and 1H NMR studies confirmed that Ca2+/MH/CMD‐PEG core‐corona micelles form at charge neutrality having a hydrodynamic radius ≈100 nm and incorporating ≈ 50 wt.‐% MH. MH entrapment in the micelles core sustained its release for up to 24 h under physiological conditions. The micelles protected the drug against degradation in aqueous solutions at room temperature and at 37 °C in the presence of FBS. The micelles were stable in aqueous solution for up to one month, after freeze drying and in the presence of FBS and BSA. CMD‐PEG copolymers did not induce cytotoxicity in human hepatocytes and murine microglia (N9) in concentrations as high as 15 mg·mL?1 after incubation for 24 h. MH micelles were able to reduce the inflammation in murine microglia (N9) activated by LPS. These results strongly suggest that MH PIC micelles can be useful in the treatment of neuroinflammatory disorders.

  相似文献   

997.
Well‐defined diblock copolymers, poly(ethylene glycol)‐block‐poly(glycidyl methacrylate)s (PEG‐b‐PGMAs), with different poly(glycidyl methacrylate) (PGMA) chains, were prepared via atom transfer radical polymerization (ATRP) from the same macromolecular initiator 2‐bromoisobutyryl‐terminated poly(ethylene glycol) (PEG). Ethyldiamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and polyethyleneimine (PEI) with an of 400 (PEI400) were used to decorate PEG‐b‐PGMAs to get the cationic polymers PEG‐b‐PGMA‐ oligoamines. These cationic polymers possessed high buffer capability and could condense plasmid DNA (pDNA) into nanoscaled complexes of 125–530 nm. These complexes showed the positive zeta potential of 20–35 mV at N/P ratios of 10–50. Most of them exhibited very low cytotoxicity and good transfection efficiency in 293T cells. The presence of the serum medium did not decrease the transfection efficiency due to the steric stabilization of the PEG chains.

  相似文献   

998.
New delivery approaches to achieve minimally invasive, sustained and local release of drugs are needed for more effective treatment of conditions such as cancer and ischemia. Hydrophobic, biodegradable, liquid injectable polymers possess a number of potential advantages for this purpose. This review examines various approaches that have been explored for the preparation of these types of polymers, their ability to control the release of various drugs ranging from low‐molecular‐weight hydrophobic compounds to protein therapeutics, and finally their degradation rates and the tissue response to them upon implantation.

  相似文献   

999.
Di Chen  Junru Wu 《Ultrasonics》2010,50(8):744-749
A liposome with a diameter ranging from 150 to 200 nm has been considered to be one of the optimal vehicles for targeted drug delivery in vivo since it is able to encapsulate drug and also circulate in the blood stream stably. Its small size, however, makes controlled release of its encapsulated content difficult. A feasibility study for applications of high intensity focused ultrasound (HIFU) of the mega-hertz frequency to induce controlled release of its content was carried out. This study, using the dynamic light scattering and transmission electron microscopic observation, demonstrated 21.2% of encapsulated fluorescent materials (FITC) could be released from liposomes with an average diameter of 210 nm when exposed to continuous (cw) ultrasound at 1.1 MHz (ISPTA = 900 W/cm2) for 10 s and the percentage release efficiency can reach to 70% after 60 s irradiation. This result also reveals that rupture of relatively large liposomes (>100 nm) and generation of pore-like defects in the membrane of small liposomes (<100 nm) due to HIFU excitation might be the main causes of the release; the inertial cavitation took place during the irradiation. The controlled drug release from liposomes by HIFU may be proven to be a potential useful modality for clinical applications.  相似文献   
1000.
This work investigates whether the application of sonoporation is limited by the size of a macromolecule being delivered and by the ability of cells to proliferate following uptake. KHT-C cells in suspension were exposed to variations in ultrasound pressure (0-570 kPa) and microbubble shell-type (lipid and protein) at fixed settings of 500 kHz centre frequency, 32 μs pulse duration, 3 kHz pulse repetition frequency and 2 min insonation. Reversible permeability (PR), defined as the number of cells stained with FITC-dextran and unstained with propidium iodide (i.e., PI-viable), was measured with flow cytometry for marker molecules ranging from 10 kDa to 2 MDa in size. Viable permeability (PV) defined as the number of permeabilised cells that maintained their ability to proliferate, was measured by clonogenic assay. Comparable intracellular delivery of all sizes of molecules was achieved, indicating that intracellular delivery of common therapeutic drugs may not be limited by molecular size. Maximum PR’s of 80% (at 10 kDa) and 55% (at 10 kDa) were achieved with lipid coated bubbles at 3.3% v/v and protein coated bubbles at 6.7% v/v concentrations. The PI-viability was approximately 80% at 570 kPa in both cases. The maximum PV achieved with both agents was 22%, while inducing a lower overall clonogenic viability with the lipid (39%) compared to the protein (56%) shelled bubbles. This study demonstrates that large macromolecules, up to 2 MDa in size, can be delivered with high efficiency to cells which undergo reversible permeabilisation, maintaining long-term viability in approximately half of the cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号