首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1991篇
  免费   226篇
  国内免费   63篇
化学   719篇
晶体学   1篇
力学   538篇
综合类   8篇
数学   479篇
物理学   535篇
  2023年   18篇
  2022年   45篇
  2021年   48篇
  2020年   46篇
  2019年   51篇
  2018年   45篇
  2017年   65篇
  2016年   103篇
  2015年   84篇
  2014年   134篇
  2013年   178篇
  2012年   118篇
  2011年   135篇
  2010年   111篇
  2009年   131篇
  2008年   101篇
  2007年   104篇
  2006年   84篇
  2005年   86篇
  2004年   68篇
  2003年   72篇
  2002年   52篇
  2001年   46篇
  2000年   26篇
  1999年   53篇
  1998年   38篇
  1997年   28篇
  1996年   22篇
  1995年   18篇
  1994年   23篇
  1993年   15篇
  1992年   16篇
  1991年   19篇
  1990年   9篇
  1989年   12篇
  1988年   13篇
  1987年   8篇
  1986年   6篇
  1985年   10篇
  1984年   6篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
排序方式: 共有2280条查询结果,搜索用时 15 毫秒
101.
Microwave-assisted extraction (MAE) and dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) were evaluated for use in the extraction and preconcentration of volatile nitrosamines in meat products. Parameters affecting MAE, such as the extraction solvent used, and DLLME, including the nature and volume of the extracting and disperser solvents, extraction time, salt addition and centrifugation time, were optimized. In the MAE method, 0.25g of sample mass was extracted in 10mL NaOH (0.05M) in a closed-vessel system. For DLLME, 1.5mL of methanol (disperser solvent) containing 20μL of carbon tetrachloride (extraction solvent) was rapidly injected by syringe into 5mL of the sample extract solution (previously adjusted to pH 6), thereby forming a cloudy solution. Phase separation was performed by centrifugation, and a volume of 3μL of the sedimented phase was analyzed by GC-MS. The enrichment factors provided by DLLME varied from 220 to 342 for N-nitrosodiethylamine and N-nitrosopiperidine, respectively. The matrix effect was evaluated for different samples, and it was concluded that sample quantification can be carried out by aqueous calibration. Under the optimized conditions, detection limits ranged from 0.003 to 0.014ngmL(-1) for NPIP and NMEA, respectively (0.12-0.56ngg(-1) in the meat products).  相似文献   
102.
A liquid‐phase microextraction technique was developed using dispersive liquid‐liquid microextraction based on solidification of floating organic drop combined with flame atomic absorption spectrometry, for the extraction and determination of trace amounts of cobalt in water samples. Microextraction efficiency factors, such as the type and volume of extraction and dispersive solvents, pH, extraction time, the chelating agent amount, and ionic strength were investigated and optimized. Under optimum conditions, an enrichment factor of 160 was obtained from 10.0 mL of water sample. The calibration graph was linearin the range of 1.15‐110 μg L?1 with a detection limit of 0.35 μg L?1. The relative standard deviation for ten replicate measurements of 10 and 100 μg L?1 of cobalt were 3.26% and 2.57%, respectively. The proposed method was assessed through the analysis of certified reference water or recovery experiments.  相似文献   
103.
In this study, a simple, rapid, and highly efficient liquid-phase microextraction method based on solidification of floating organic droplet was coupled with high performance liquid chromatography-photo diode array detection (HPLC-PDA) for determination of ketoconazole, clotrimazole, and miconazole as antifungal drugs. Central composite design (CCD) was used for optimization of several factors affecting the extraction efficiency. The optimized conditions were established to be 550 rpm for stirring rate, 35 min for extraction time, 57 °C for extraction temperature, 8.5 for solution pH, 10 μl for organic solvent volume, and 7% (w/v) of NaCl for ionic strength. Limit of detections (LODs) of the extraction method ranged from 0.01 to 0.1 μg L−1 and the linear dynamic ranges (LDRs) ranged from 0.1 to 300 μg L−1 for the three antifungal drugs. Relative standard deviations (RSDs) of the proposed method were 5-11%. Preconcentration factors in the range of 306-1350 were obtained at extraction time of 35 min. Finally, performance of the proposed method was evaluated for the extraction and determination of the drugs’ levels in microgram per liter in samples and satisfactory results were obtained.  相似文献   
104.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was evaluated for the simultaneous determination of five chlorophenols and seven haloanisoles in wines and cork stoppers. Parameters, such as the nature and volume of the extracting and disperser solvents, extraction time, salt addition, centrifugation time and sample volume or mass, affecting the DLLME were carefully optimized to extract and preconcentrate chlorophenols, in the form of their acetylated derivatives, and haloanisoles. In this extraction method, 1mL of acetone (disperser solvent) containing 30μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5mL of sample solution containing 200μL of acetic anhydride (derivatizing reagent) and 0.5mL of phosphate buffer solution, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation, and a volume of 4μL of the sedimented phase was analyzed by GC-MS. The wine samples were directly used for the DLLME extraction (red wines required a 1:1 dilution with water). For cork samples, the target analytes were first extracted with pentane, the solvent was evaporated and the residue reconstituted with acetone before DLLME. The use of an internal standard (2,4-dibromoanisole) notably improved the repeatability of the procedure. Under the optimized conditions, detection limits ranged from 0.004 to 0.108ngmL(-1) in wine samples (24-220pgg(-1) in corks), depending on the compound and the sample analyzed. The enrichment factors for haloanisoles were in the 380-700-fold range.  相似文献   
105.
In this study, the steroid hormone levels in river and tap water samples were determined by using a novel dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO). Several parameters were optimized, including the type and volume of the extraction and dispersive solvents, extraction time, and salt effect. DLLME-SFO is a fast, cheap, and easy-to-use method for detecting trace levels of samples. Most importantly, this method uses less-toxic solvent. The correlation coefficient of the calibration curve was higher than 0.9991. The linear range was from 5 to 1000 μg L−1. The spiked environmental water samples were analyzed using DLLME-SFO. The relative recoveries ranged from 87% to 116% for river water (which was spiked with 4 μg L−1 for E1, 3 μg L−1 for E2, 4 μg L−1 for EE2 and 9 μg L−1 for E3) and 89% to 102% for tap water (which was spiked with 6 μg L−1 for E1, 5 μg L−1 for E2, 6 μg L−1 for EE2 and 10 μg L−1 for E3). The detection limits of the method ranged from 0.8 to 2.7 μg L−1 for spiked river water and 1.4 to 3.1 μg L−1 for spiked tap water. The methods precision ranged from 8% to 14% for spiked river water and 7% to 14% for spiked tap water.  相似文献   
106.
This paper presents a new sample preparation procedure for determination of selected acidic pharmaceuticals (ibuprofen, naproxen, ketoprofen, and diclofenac) in sewage sludge using microwave assisted solvent extraction, dispersive matrix extraction (DME) followed by the conventionally applied solid phase extraction (SPE), derivatization, and gas chromatography-mass spectrometry. The recoveries calculated from analytical data of spiked sludge samples changed in the range of 80-105% ± 15% for the four pharmaceuticals in mixed and activated sludge depending on the efficiency of the clean-up procedure. The measured concentration values of ibuprofen and naproxen were identical in the mixed and the activated sludge samples. However, ketoprofen and diclofenac showed about twice as high concentration in activated sludge than in the mixed one independently of the applied extraction method. The typical concentration ranges of ibuprofen, naproxen, ketoprofen and diclofenac in sewage sludge were 10-30 ng/g, 30-50 ng/g, 50-130 ng/g, and 50-140 ng/g respectively.  相似文献   
107.
In this research, we combined ionic liquid-based dispersive liquid-liquid micro-extraction (IL-based DLLME) with stopped-flow spectrofluorometry (SFS) to evaluate the concentration of aluminum in different real samples at trace level. 1-Hexylpyridinium hexafluorophosphate [Hpy][PF6] ionic liquid and 8-hydroxyquinoline (oxine), which forms a highly fluorescent complex with Al3+, were chosen as the extraction solvent and chelating agent, respectively. The hydrophobic Al-oxine complex was extracted into the [Hpy][PF6] and separated from the aqueous phase. Then, the concentration of the enriched aluminum in the sediment phase was determined by SFS. Some effective parameters that influence the SFS signals and the micro-extraction efficiency, such as the suction and sending time, the concentration of the chelating agent, pH, the amount of the ionic liquid, the type of disperser solvent and diluting agent, ionic strength, extraction time, equilibration temperature and centrifugation time were investigated and optimized. In the optimum experimental conditions, the limit of detection (3 s) and enrichment factor were 0.05 μg L−1 and 100, respectively. The relative standard deviation (RSD) for six replicate determinations of 6 μg L−1 Al was 1.7%. The calibration graph using the pre-concentration system was linear in the range of 0.06-15 μg L−1 with a correlation coefficient of 0.9989. The developed method was validated by the analysis of certified reference materials and applied successfully to the determination of aluminum in several water, fruit juice and food samples.  相似文献   
108.
建立了分散固相萃取-液相色谱-质谱法测定水稻秸秆、糙米、稻壳及土壤中戊唑醇残留量。方法以乙腈为萃取溶剂,N-丙基-乙二胺(PSA)为吸附剂,实现样品快速制备;在Zorbax Eclipse XDB-C18色谱柱上,以甲醇-5 mmol乙酸铵缓冲溶液(70/30,V/V)为流动相,采用电喷雾质谱检测器,选择离子监测模式,以m/z308为定量检测离子,戊唑醇保留时间在9.5 min左右,在0.005~2 mg/L范围内浓度与峰面积呈良好的线性关系,相关系数为0.9999。在4种样本中添加不同浓度戊唑醇其平均回收率在73.6%~105.8%,相对标准偏差(n=5)小于15%,检出限(S/N=5)为2.5×10-11g。该方法简单、快速、灵敏、准确。  相似文献   
109.
建立了分散液相微萃取.气相色谱,质谱快速分析水中硝基苯、对硝基苯、1,3一二硝基苯和2,4-二硝基氯苯的新方法.将含有18μL氯苯(萃取荆)的0.25 mL丙酮(分散剂)作为萃取体系,快速注入到5.0 mL水溶液中.在4000r/min下离心2.0 min后,得到(10.0±0.5)μL沉积相(氯苯),取底部沉积相1.0μL进行气相色谱,质谱分析.方法线性范围0.5~50μg/L(r2=0.9986~0.9994),检出限0.2~0.5μg/L,相对标准偏差4.2%~7.3%(n=5).将该方法用于环境水样的测定,加标回收率72.9%~89.6%.  相似文献   
110.
A method for the determination of 33 pesticides in peanut oil by GC-MS was described. Two extraction procedures based on (i) low-temperature extraction and (ii) liquid-liquid extraction were tested for the optimization of the method. The mixture of anhydrous MgSO(4) with primary secondary amine (PSA) or with PSA and C(18) was performed as sorbents in dispersive SPE. Low temperature along with PSA and C(18) cleanup gave the best results. Pesticides were identified and quantified by GC-MS in SIM mode. The correlation coefficients, R(2), in the linear range tests were better than 0.990. The average recoveries for most pesticides (spiked at 0.02, 0.05, 0.2, and 1 mg/kg) ranged from 70 to 110%, the RSD was below 20% in most instances, and LODs varied from 0.5 to 8 mug/kg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号