首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   13篇
  国内免费   7篇
化学   98篇
晶体学   3篇
力学   1篇
物理学   16篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   10篇
  2020年   23篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   7篇
  2009年   8篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
41.
Sluggish kinetics and poor reversibility of cathode chemistry is the major challenge for magnesium batteries to achieve high volumetric capacity. Introduction of the cuprous ion (Cu+) as a charge carrier can decouple the magnesiation related energy storage from the cathode electrochemistry. Cu+ is generated from a fast equilibrium between copper selenide electrode and Mg electrolyte during standing time, rather than in the electrochemical process. A reversible chemical magnesiation/de‐magnesiation can be driven by this solid/liquid equilibrium. During a typical discharge process, Cu+ is reduced to Cu and drives the equilibrium to promote the magnesiation process. The reversible Cu to Cu+ redox promotes the recharge process. This novel Cu+ mediated cathode chemistry of Mg battery leads to a high reversible areal capacity of 12.5 mAh cm?2 with high mass loading (49.1 mg cm?2) of the electrode. 80 % capacity retention can be achieved for 200 cycles after a conditioning process.  相似文献   
42.
To obtain an ideal electrocatalysts for hydrogen fuel cells, we investigated group 4 and 5 oxide-based compounds because of their high degree of freedom. First-principles calculations revealed that oxide surfaces such as those of titanium oxide could break down the universal scaling to achieve the ideal state of the oxygen reduction reaction. We experimentally clarified that the active sites were oxygen vacancies for tantalum and zirconium oxides, in addition to doped foreign elements and crystalline structures for titanium oxide. We successfully demonstrated that precious metal-free and carbon-free oxide-based cathodes have high quality active sites and superior durability in 0.1 M sulfuric acid at 80°C. Our strategy was developed as follows: (1) Active sites are created on the oxide surface by modifying the crystalline structure and electronic states and (2) electrons participating in the oxygen reduction reaction are supplied by nanosized oxide particles and oxide films through the tunneling effect of electrons.  相似文献   
43.
44.
Cyclic voltammetry and controlled-potential electrolysis have been employed to investigate the electrochemical behavior of 1,4-dibromo-, 1,4-diiodo-, 1-bromo-4-chloro- and 1-chloro-4-iodobutane at glassy carbon cathodes in dimethylformamide containing tetramethylammonium perchlorate. Depending on the identity of the 1,4-dihalobutane electrolyzed and the choice of potential, reduction of these compounds leads to a myriad of products including cyclobutane, n-butane, n-octane, 1-butene, cis-and trans-2-butene, 1,3-butadiene, ethylene, 1-chlorobutane, 1-bromobutane, 1-iodobutane, 1-iodooctane, 1,4-dichlorobutane, 1,8-dichlorooctane, and 1,8-diiodooctane. Experiments involving the use of proton donors (phenol and 1,1,1,3,3,3-hexafluoro-2-propanol), a radical trap (norbornylene), and several deuterium ion or atom donors have been utilized to elucidate the mechanisms by which the various electrolysis products are formed.  相似文献   
45.
Aqueous Zn-ion batteries (AZIBs) are considered as promising large-scale energy storage devices due to their high safety and low cost. Transition metal dichalcogenides (TMDs) as the potential aqueous Zn-storage cathode materials are under the research spotlight because of their facile 2D ion-transport channels and weak electrostatic interactions with Zn2+. In this concept article, we summarize the intrinsic structural features and aqueous Zn-storage mechanisms of the TMDs-based electrodes. More significantly, the latest design concepts of TMDs materials for high-performance AZIBs are discussed in detail from three aspects of interlayer expansion engineering, phase transition engineering, and structure defects engineering. Finally, the current challenges facing TMDs cathodes and possible remedies are outlined for future developments towards efficient, rapid, and stable aqueous Zn-ion storage.  相似文献   
46.
Cyclic voltammograms for the reduction of ethyl 2-bromo-3-(3,4-dimethoxyphenyl)-3-(propargyloxy)propanoate (1) at glassy carbon electrodes in dimethylformamide containing tetraalkylammonium salts exhibit three prominent waves corresponding to cleavage of the carbon–bromine bond and to subsequent reduction of ethyl trans-3-(3,4-dimethoxyphenyl)-prop-2-enoate (4). Controlled-potential electrolyses of 1 at potentials corresponding to reduction of the carbon–bromine bond afford 4 as the major product with an average yield of 56%. In the presence of a proton donor (1,1,1,3,3,3-hexafluoro-2-propanol), the quantity of 4 decreases slightly, and 2-(3,4-dimethoxyphenyl)-3-(ethoxycarbonyl)-4-methyl-2,5-dihydrofuran (3) is obtained in moderate amount (26%). We propose a mechanistic scheme whereby the major products are formed via a combination of one- and two-electron processes.  相似文献   
47.
We report herein on the effect of the PVdF binder on the stability of composite LiCoO2 electrodes at elevated temperatures in 1 M LiPF6 EC/EMC solutions at open circuit conditions. The structure and morphology of composite LiCoO2 electrodes with different combinations of electrode components (LiCoO2 active material, PVdF binder, carbon black and current collector) were evaluated by Raman spectroscopy, X-ray diffraction and SEM. The content of Co ions in the electrolyte solutions was determined by ICP. A new effect was discovered, namely, a detrimental impact of the contact between PVdF and LiCoO2 on the stability of the active mass. The formation of surface Co3O4 and dissolution of Co ions at elevated temperatures is accelerated at the contact points between the active mass and the binder. The effect of water content in the electrolyte solutions on the stability of LiCoO2 was also studied. The presence of water (and/or HF) is a necessary condition for the accelerated dissolution of Co ions from the active mass. LiCoO2 oxidizes the solvents at elevated temperatures thus forming CO2.  相似文献   
48.
Sodium-ion batteries have attracted tremendous attention due to their much lower cost and similar working principle compared with lithium-ion batteries, which have been invited great expectation as energy storage devices in grid-level applications. The sodium superionic conductor Na3V2(PO4)3 has been considered as a promising cathode candidate; however, its intrinsic low electronic conductivity results in poor rate performance and unsatisfactory cycling performance, which severely impedes its potential for practical applications. Herein, we developed a facile one-pot strategy to construct dual carbon-protected hybrid structure composed of carbon coated Na3V2(PO4)3 nanoparticles embedded with carbon matrix with excellent rate performance, superior cycling stability and ultralong lifespan. Specifically, it can deliver an outstanding rate performance with a 51.5 % capacity retention from 0.5 to 100 C and extraordinary cycling stability of 80.86 % capacity retention after 6000 cycles at the high rate of 20 C. The possible reasons for the enhanced performance could be understood as the synergistic effects of the strengthened robust structure, facilitated charge transfer kinetics, and the mesoporous nature of the Na3V2(PO4)3 hybrid structure. This work provides a cost-effective strategy to effectively optimize the electrochemical performance of a Na3V2(PO4)3 cathode, which could contribute to push forward the advance of its practical applications.  相似文献   
49.
Non-metal ammonium ( ) ions have recently been explored as effective charge carriers in battery systems due to their abundancy, light weight, small hydration shells in water. The research concerning the use of redox chemistry in batteries, particularly in flexible batteries, is still in its infancy. For the first time, we report a flexible full ion battery (AIB) composed of a concentrated hydrogel electrolyte sandwiched between NH4V3O8 ⋅ 2.9H2O nanobelts cathode and polyaniline (PANI) anode, for enhanced performance. The hydrogel electrolyte is simply synthesized by using ammonium sulfate, xanthan gum and water. As a reference, the AIB based on the liquid aqueous electrolyte is prepared first, which exhibits a capacity of 121 mAh g−1 and a capacity retention of 95 % after 400 cycles at a specific current of 0.1 A g−1. On the other hand, the simple synthesis of the hydrogel electrolyte allows us to facilely tune and optimize the salt contents in the electrolyte, to maximize the ionic conductivity, transport kinetics, mechanical characteristics, and consequently the battery performance. It is found that the flexible battery based on the hydrogel electrolyte prepared from 3 M ammonium sulfate solution shows the best electrochemical performance, i. e., a capacity of 60 mAh g−1 while maintaining a capacity retention of 88 % after 250 cycles at a specific current of 0.1 A g−1. Moreover, the flexible AIB retains excellent electrochemical performance when bent at different angles, demonstrating remarkable mechanical strength and flexibility. Therefore, this study sheds new light on the utilization of concentrated hydrogel electrolyte in the AIB chemistry, for developments of novel electrochemical energy storage technology with high safety and low cost.  相似文献   
50.
Cyclic voltammetry and controlled-potential electrolysis have been employed to investigate the reduction of some mono-, di-, tri-, and tetrahalopyrimidines at mercury cathodes in acetonitrile containing tetramethylammonium tetrafluoroborate. Two irreversible cyclic voltammetric waves are observed for reduction of 2-bromo-, 5-bromo-, and 2-chloropyrimidine; the first wave is due to cleavage of the carbon---halogen bond, and the second wave is attributable to reduction of pyrimidine. Cyclic voltammograms for 2,4-dichloro- and 4,6-dichloropyrimidine exhibit three cathodic waves, whereas that for 2,4,6-trichloropyrimidine shows four cathodic waves, arising from sequential cleavage of carbon---chlorine bonds as well as the reduction of pyrimidine. For the reduction of 2,4,5,6-tetrachloropyrimidine, a cyclic voltammogram exhibits four major irreversible cathodic waves corresponding to the cleavage of carbon---chlorine bonds, but the wave for reduction of pyrimidine is poorly defined. Bulk electrolyses of halopyrimidines at potentials for different stages of reduction lead to products that are consistent with expectations based upon cyclic voltammetry. In addition, our findings agree well with theoretical calculations of the relative stabilities of the various reduction intermediates. Mechanistic aspects of the reduction of halopyrimidines are discussed and, using homogeneous redox catalysis, we have determined the lifetimes of the electrogenerated radical-anions of 2-bromo- and 2-chloropyrimidine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号