首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   3篇
  国内免费   1篇
化学   8篇
晶体学   1篇
力学   128篇
数学   8篇
物理学   85篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   9篇
  2017年   4篇
  2016年   24篇
  2015年   21篇
  2014年   9篇
  2013年   24篇
  2012年   11篇
  2011年   13篇
  2010年   19篇
  2009年   14篇
  2008年   12篇
  2007年   16篇
  2006年   9篇
  2005年   8篇
  2004年   8篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1989年   1篇
  1976年   1篇
排序方式: 共有230条查询结果,搜索用时 31 毫秒
91.
Atomistic simulation represents a valuable methodology for interpreting and predicting surface structures. The emphasis of our work is to develop and apply this approach to understanding the role of surface defects and additives in modifying the structure and stability of mineral surfaces. The basis of our approach is energy minimisation which allows us to evaluate the most stable surface configurations. The utility and limitations of this approach will be illustrated via a number of examples. These include describing the factors governing the stability of mineral surfaces and applying these considerations to understanding the surfaces of olivine and spinel. In addition, we are beginning to address the water-solid interface. We find a wide variation in the reactivity of the different surfaces of rock-salt oxides from (100) which show only physisorption, through stepped surfaces which show dissociative adsorption to (111) which forms the hydroxide. One way of determining the interaction between surfaces and additives is the modification of crystal growth thus we are also concerned with attempting to model the growth process. However, the low index surfaces often grow via screw dislocations. Therefore preliminary work on modelling the interaction of screw dislocations with surfaces of MgO will be described.  相似文献   
92.
We consider the height process of a Lévy process with no negative jumps, and its associated continuous tree representation. Using Lévy snake tools developed by Le Gall-Le Jan and Duquesne-Le Gall, with an underlying Poisson process, we construct a fragmentation process, which in the stable case corresponds to the self-similar fragmentation described by Miermont. For the general fragmentation process we compute a family of dislocation measures as well as the law of the size of a tagged fragment. We also give a special Markov property for the snake which is of its own interest.   相似文献   
93.
Non-polar a-plane (1 1 2¯ 0) GaN films were grown on r-plane sapphire by metal–organic vapor phase epitaxy and were subsequently annealed for 90 min at 1070 °C. Most dislocations were partial dislocations, which terminated basal plane stacking faults. Prior to annealing, these dislocations were randomly distributed. After annealing, these dislocations moved into arrays oriented along the [0 0 0 1] direction and aligned perpendicular to the film–substrate interface throughout their length, although the total dislocation density remained unchanged. These changes were accompanied by broadening of the symmetric X-ray diffraction 1 1 2¯ 0 ω-scan widths. The mechanism of movement was identified as dislocation glide, occurring due to highly anisotropic stresses (confirmed by X-ray diffraction lattice parameter measurements) and evidenced by macroscopic slip bands observed on the sample surface. There was also an increase in the density of unintentionally n-type doped electrically conductive inclined features present at the film–substrate interface (as observed in cross-section using scanning capacitance microscopy), suggesting out-diffusion of impurities from the substrate along with prismatic stacking faults. These data suggest that annealing processes performed close to film growth temperatures can affect both the microstructure and the electrical properties of non-polar GaN films.  相似文献   
94.
Low temperature magneto-transport properties and electron dephasing mechanisms of phosphorus-doped ZnO thin films grown on (1 1 1) Si substrates with Lu2O3 buffer layers using pulsed laser deposition were investigated in detail by quantum interference and weak localization theories under magnetic fields up to 10 T. The dephasing length follows the temperature dependence with an index p≈1.6 at higher temperatures indicating electron–electron interaction, yet becomes saturated at lower temperatures. Consistent with photoluminescence measurements and the multi-band simulation of the electron concentration, such behavior was associated with the dislocation densities obtained from x-ray diffraction and mobility fittings, where charged edge dislocations acting as inelastic Coulomb scattering centers were affirmed responsible for electron dephasing. Owing to the temperature independence of the dislocation density, the phosphorus-doped ZnO film maintained a Hall mobility of 4.5 cm2 V−1 s−1 at 4 K.  相似文献   
95.
The low temperature mineralization of zinc oxide nanorod bunches from zinc precursor solution mixed with the cationic surfactant Cetyl Trimethyl Ammonium Bromide is reported. Five different combinations of zinc precursor and surfactant ratios are chosen and their properties are compared using the average particle size, lattice parameter ratio (c/ac/a) of hexagonal ZnO from X-ray diffraction, the morphologies from SEM, TEM and their optical characteristics by using optical absorption spectroscopy spectrometry. A surfactant lowers the surface tension of the solution, and forms a thermodynamically ordered and a disordered phase wherein, ordered phase seeds the growth of the ZnO nanostructures. A peculiar circular structure called ‘micelle’ is formed by the surfactant. The heads, located on the peripheries of the micelle, are the ordered phase in the solution, and are the original nucleation sites of the Zinc Oxide nanostructures. This fashion of nucleation is the reason for the ‘arms of the wheel-like’ morphology consisting of nanorod bunches. Out of the five combinations experimented, the 3:1, 3:2, 1:1 ratios show nearness in the standard c/ac/a value. The photoluminescence spectrum shows UV emission in the region of 380 nm and weak blue emission. The UV–VIS–NIR spectrum has exhibited a characteristic UV-absorption.  相似文献   
96.
《Current Applied Physics》2015,15(3):232-237
The microstructural properties of a GaN thin film grown on a Si(110) substrate under various ammonia (NH3)-flux conditions were observed to study growth mode and defect evolution. The surface flatness of GaN thin films was improved with the increase of the NH3 flux while the thickness was decreased by increasing the NH3 flux. In addition, the crystalline quality of the GaN film grown under the lower NH3 flux (100 sccm) was better than that of the film under the higher NH3 flux (400 sccm). The different dislocation behaviors depending on NH3 fluxes were observed; the low density of dislocations was measured and most of dislocations penetrating the thin film was mixed- and edge-type dislocations when GaN was grown under the low NH3 flux condition while the high density of dislocation and many mixed- and screw-type dislocations penetrating the film were observed in the GaN film grown under the high NH3 flux. These phenomena are demonstrated by using a kinetic model related to the role of NH3.  相似文献   
97.
Anodic aluminum oxide (AAO) templates with highly ordered nanoporous structure were fabricated by means of the electrochemical anodization under the constant anodic voltage and electrolyte temperature. The dependence of the ordering degree of nanopores on the point defects, dislocation configuration and grain boundary of aluminum is qualitatively analyzed. Experiment results show that the size of the ordered region of nanopores depends strongly on the point defects, dislocation cell configuration.  相似文献   
98.
We perform three-dimensional dislocation dynamics simulations of solid and annular pillars, having both free-surface boundary conditions, or strong barriers at the outer and/or inner surfaces. Both pillar geometries are observed to exhibit a size effect where smaller pillars are stronger. The scaling observed is consistent with the weakest-link activation mechanism and depends on the solid pillar diameter, or the annular pillar effective diameter, Deff = D − Di, where D and Di are the external and internal diameters of the pillar, respectively. An external strong barrier is observed to dramatically increase the dislocation density by an order of magnitude due to trapping dislocations at the surface. In addition, a considerable increase in the flow strength, by up to 60%, is observed compared to simulations having free-surface boundary conditions. As the applied load increases, weak spots form on the surface of the pillar by dislocations breaking through the surface when the RSS is greater than the barrier strength. The hardening rate is also observed to increase with increasing barrier strength. With cross-slip, we observe dislocations moving to other glide planes, and sometimes double-cross-slipping, producing a thickening of the slip traces at the surface. Finally the results are in qualitative agreement with recent compression experimental results of coated and centrally-filled micropillars.  相似文献   
99.
100.

The interaction of transonic edge dislocations with a sessile self-interstitial dislocation loop (SIL) in BCC tungsten is investigated using atomistic Molecular Dynamics method. The moving velocity of the transonic edge dislocations is higher than the transverse sound wave velocity. It was found that SIL has a strong pinning effect to the moving edge dislocations. The SIL was eventually annihilated through forming jogs on the moving edge dislocations. A transonic edge dislocation can be stopped by SIL at the pinning point, and then the resulting jogs could move above the sound barrier afterwards under high shear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号