首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   3篇
  国内免费   1篇
化学   8篇
晶体学   1篇
力学   128篇
数学   8篇
物理学   85篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   9篇
  2017年   4篇
  2016年   24篇
  2015年   21篇
  2014年   9篇
  2013年   24篇
  2012年   11篇
  2011年   13篇
  2010年   19篇
  2009年   14篇
  2008年   12篇
  2007年   16篇
  2006年   9篇
  2005年   8篇
  2004年   8篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1989年   1篇
  1976年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
101.
The numerical study of high-rate plasticity of Cu target with different grain sizes under the action of nanosecond relativistic high-current electron beam has been carried out in the paper. The model of microcrystal material plasticity includes dislocation kinetics and dynamics as well as the stress relief in the grain boundaries of the polycrystal. This model has only two adjustable parameters. The presented results demonstrate a strong dependence of the shock wave attenuation coefficient on the grain size. At the grain size of about 70 nm, the plasticity mechanism of the dislocation glide inside grains changes to plasticity mechanism along grain boundaries.  相似文献   
102.
103.
A well-known intragranular dislocation source, the Frank-Read (FR) source plays an important role in size-dependent dislocation multiplication in crystalline materials. Despite a number of studies in this topic, a systematic investigation of multiple aspects of the FR source in different materials is lacking. In this paper, we employ large scale quasistatic concurrent atomistic-continuum (CAC) simulations to model an edge dislocation bowing out from an FR source in Cu, Ni, and Al. First, a number of quantities that are important for the FR source process are quantified in the coarse-grained domain. Then, two key characteristics of the FR source, including the critical shear stress and critical dislocation configuration, are investigated. In all crystalline materials, the critical stresses and the aspect ratio of the dislocation half-loop height to the FR source length scale well with respect to the FR source length. In Al, the critical stress calculated by CAC simulations for a given FR source length agrees reasonably well with a continuum model that explicitly includes the dislocation core energy. Nevertheless, the predictions of the isotropic elastic theory do not accurately capture the FR source responses in Cu and Ni, which have a relatively large stacking fault width and elastic anisotropy. Our results highlight the significance of directly simulating the FR source activities using fully 3D models and shed light on developing more accurate continuum models.  相似文献   
104.
We perform atomistic simulations of dislocation nucleation in defect free crystals in 2 and 3 dimensions during indentation with circular (2D) or spherical (3D) indenters. The kinematic structure of the theory of Field Dislocation Mechanics (FDM) is shown to allow the identification of a local feature of the atomistic velocity field in these simulations as indicative of dislocation nucleation. It predicts the precise location of the incipient spatially distributed dislocation field, as shown for the cases of the Embedded Atom Method potential for Al and the Lennard–Jones pair potential. We demonstrate the accuracy of this analysis for two crystallographic orientations in 2D and one in 3D. Apart from the accuracy in predicting the location of dislocation nucleation, the FDM based analysis also demonstrates superior performance than existing nucleation criteria in not persisting in time beyond the nucleation event, as well as differentiating between phase boundary/shear band and dislocation nucleation. Our analysis is meant to facilitate the modeling of dislocation nucleation in coarser-than-atomistic scale models of the mechanics of materials.  相似文献   
105.
106.
107.
Single crystal constitutive equations based on dislocation density (SCCE-D) were developed from Orowan’s strengthening equation and simple geometric relationships of the operating slip systems. The flow resistance on a slip plane was computed using the Burger’s vector, line direction, and density of the dislocations on all other slip planes, with no adjustable parameters. That is, the latent/self-hardening matrix was determined by the crystallography of the slip systems alone. The multiplication of dislocations on each slip system incorporated standard 3-parameter dislocation density evolution equations applied to each slip system independently; this is the only phenomenological aspect of the SCCE-D model. In contrast, the most widely used single crystal constitutive equations for texture analysis (SCCE-T) feature 4 or more adjustable parameters that are usually back-fit from a polycrystal flow curve. In order to compare the accuracy of the two approaches to reproduce single crystal behavior, tensile tests of single crystals oriented for single slip were simulated using crystal plasticity finite element modeling. Best-fit parameters (3 for SCCE-D, 4 for SCCE-T) were determined using either multiple or single slip stress–strain curves for copper and iron from the literature. Both approaches reproduced the data used for fitting accurately. Tensile tests of copper and iron single crystals oriented to favor the remaining combinations of slip systems were then simulated using each model (i.e. multiple slip cases for equations fit to single slip, and vice versa). In spite of fewer fit parameters, the SCCE-D predicted the flow stresses with a standard deviation of 14 MPa, less than one half that for the SCCE-T conventional equations: 31 MPa. Polycrystalline texture simulations were conducted to compare predictions of the two models. The predicted polycrystal flow curves differed considerably, but the differences in texture evolution were insensitive to the type of constitutive equations. The SCCE-D method provides an improved representation of single-crystal plastic response with fewer adjustable parameters, better accuracy, and better predictivity than the constitutive equations most widely used for texture analysis (SCCE-T).  相似文献   
108.
Disclinations are common defects in nanocrystalline materials processed via the severe plastic deformation technique. A disclination, depending on its strength, may remain stable or partially relax into other structures such as cracks and dislocation walls. This paper develops closed-form analytical expressions for the energy of a nanograin containing a negative wedge disclination and a wall of periodic edge dislocations. Using these expressions, it is found that (1) a critical disclination strength is required for emitting dislocations and that this critical value demonstrates a strong power law dependence on the nanograin size, (2) there exists a favorable dislocation spacing, which decreases with increase in the disclination strength, in the dislocation wall formed by the emitted dislocations, and (3) the misorientation of the dislocation wall lies between 5° and 12° for disclination strength in the range of 15–35°.  相似文献   
109.
山东省是我国经济发展的大省,其经济的高速发展必定伴随着产业结构及就业结构的变动。积极探索山东省产业结构和就业结构之间的关系,保持经济和就业同步增长,既是进一步拓宽劳动就业渠道、扩大就业容量的需要,也是确保经济持续健康有序发展的重要条件。本文运用统计方法对山东省产业结构和就业结构进行了实证研究。  相似文献   
110.
We report twinning to slip transition with decreasing size and increasing temperature in ultrathin <100> BCC Fe nanowires. Molecular dynamics simulations have been performed on different nanowire size in the range 0.404–3.634 nm at temperatures ranging from 10 to 900 K. The results indicate that slip mode dominates at low sizes and high temperatures, while deformation twinning is promoted at high sizes and low temperatures. The temperature, at which the nanowires show twinning to slip transition, increases with increasing size. The different modes of deformation are also reflected appropriately in the respective stress–strain behaviour of the nanowires.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号