首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   10篇
  国内免费   16篇
化学   55篇
力学   18篇
综合类   1篇
数学   128篇
物理学   212篇
  2022年   6篇
  2021年   4篇
  2020年   7篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   34篇
  2013年   19篇
  2012年   25篇
  2011年   28篇
  2010年   22篇
  2009年   54篇
  2008年   25篇
  2007年   16篇
  2006年   10篇
  2005年   10篇
  2004年   16篇
  2003年   5篇
  2002年   8篇
  2001年   11篇
  2000年   6篇
  1999年   12篇
  1998年   16篇
  1997年   12篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
排序方式: 共有414条查询结果,搜索用时 15 毫秒
31.
In this article,the authors obtain an integral representation for the relaxation of the functional
F(x,u,Ω):={∫^f(x,u(x),εu(x))dx Ω if u∈W^1,1(Ω,R^N), +∞ otherwise, in the space of functions of bounded deformation,with respect to L^1-convergence.Here Eu represents the absolutely continuous part of the symmetrized distributional derivative Eu.f(x,p,ξ)satisfying weak convexity assumption.  相似文献   
32.
Model and simulation study is the starting point for engineering design and development, especially for developing vehicle control systems. This paper presents a methodology to build models for application of smart struts for vehicle suspension control development. The modeling approach is based on decomposition of the testing data. Per the strut functions, the data is dissected according to both control and physical variables. Then the data sets are characterized to represent different aspects of the strut working behaviors. Next different mathematical equations can be built and optimized to best fit the corresponding data sets, respectively. In this way, the model optimization can be facilitated in comparison to a traditional approach to find out a global optimum set of model parameters for a complicated nonlinear model from a series of testing data. Finally, two struts are introduced as examples for this modeling study: magneto-rheological (MR) dampers and compressible fluid (CF) based struts. The model validation shows that this methodology can truly capture macro-behaviors of these struts.  相似文献   
33.
Hong Fan 《中国物理 B》2021,30(7):78703-078703
To solve the problem that the magnetic resonance (MR) image has weak boundaries, large amount of information, and low signal-to-noise ratio, we propose an image segmentation method based on the multi-resolution Markov random field (MRMRF) model. The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales. The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm, and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation. The results are then segmented by the improved MRMRF model. In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model, it is proposed to introduce variable weight parameters in the segmentation process of each scale. Furthermore, the final segmentation results are optimized. We name this algorithm the variable-weight multi-resolution Markov random field (VWMRMRF). The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness, and can accurately and stably achieve low signal-to-noise ratio, weak boundary MR image segmentation.  相似文献   
34.
Here we investigate whether varying the diffusion-gradient orientation during a general waveform single pulsed-field gradient sequence improves sensitivity to the size of coherently oriented pores over having a fixed orientation. The experiment optimises the shape and the orientation of the gradient waveform in each of a set of measurements to minimise the expected variance of estimates of the parameters of a simple model. A key application motivating the work is measuring the size of axons in white matter. Thus, we use a two compartment white matter model with impermeable, single-radius cylinders, and search for waveforms that maximise the sensitivity to axon radius, intra-cellular volume fraction and diffusion constants. Output of the optimisation suggests the only benefit of allowing the gradient orientation to vary in the plane perpendicular to the cylinders is that we can gain perpendicular gradient strength by maximising two orthogonal gradients simultaneously. This suggests that varying orientation in itself does not increase the sensitivity to model parameters. On the other hand, the variation in a plane containing the parallel direction increases the sensitivity significantly because parallel sensitivity improves the diffusion constant estimates. However, we also find that similar improvement in the estimates can be achieved without optimising the orientation, but by having one measurement in the parallel and the rest in the perpendicular direction. The optimisation searches a very large space where it cannot hope to find the global minimum so we cannot make a categorical conclusion. However, given the consistency of the results in multiple reruns and variations of the experiments reported here, we can suggest that for probing coherently oriented systems, pulse sequences with variable orientation, such as double-wave vector sequences, do not offer more advantage than fixed orientation sequences with optimised shape. The advantage of varying orientation is however likely to emerge for more complex systems with dispersed pore orientation.  相似文献   
35.

Purpose

This retrospective study was designed to evaluate the apparent diffusion coefficient (ADC) of line scan diffusion images (LSDI) in normal prostate and prostate cancer. Single-shot echo planner images (SS-EPI) were used for comparison.

Materials and Methods

Twenty prostate tumors were examined by conventional MRI in 14 patients prior to radical prostatectomy. All patients were examined with a 1.5-T MR imager (Signa CV/i ver. 9.1 GE Medical System Milwaukee, WI, USA). Diffusion-weighted MR imaging (DWI) using LSDI was performed with a pelvic phased-array coil, with b values of 5 and 800 s/mm2. DWI using SS-EPI was performed with a body coil, with b values of 0 and 800 s/mm2. The ADCs of each sequence for 14 normal prostate and 20 prostate cancers were histopathologically assessed. Signal-to-noise ratio (SNR) on DWI was estimated and compared for each sequence.

Results

The mean ADCs (±S.D.) of normal peripheral zones (PZ), transition zones (TZ) and cancer (in 10−3 mm2/s) that used LSDI were 1.42±0.12, 1.23±0.10 and 0.79±0.19, respectively. Those that used SS-EPI were 1.76±0.26, 1.38±0.20 and 1.05±0.27, respectively. Using unpaired t test (P<.05), we found a significant difference in each sequence between normal tissue (both PZ and TZ) and the cancer. Paired t test (P<.05) also registered a significant difference between LSDI and SS-EPI. Mean SNR for DWI using LSDI was 16.49±5.03, while the DWI using SS-EPI was 18.85±9.26. The difference between the SNR of each sequence was not statistically significant by paired t test.

Conclusion

We found that ADCs using LSDI and SS-EPI showed similar tendencies in the same patients. However, in all regions, LSDI ADCs had smaller standard deviations than SS-EPI ADCs.  相似文献   
36.
Promising recent investigations have shown that breast malignancies exhibit restricted diffusion on diffusion-weighted imaging (DWI) and may be distinguished from normal tissue and benign lesions in the breast based on differences in apparent diffusion coefficient (ADC) values. In this study, we assessed the influence of intravoxel fat signal on breast diffusion measures by comparing ADC values obtained using a diffusion-weighted single shot fast spin-echo sequence with and without fat suppression. The influence of breast density on ADC measures was also evaluated. ADC values were calculated for both tumor and normal fibroglandular tissue in a group of 21 women with diagnosed breast cancer. There were systematic underestimations of ADC for both tumor and normal breast tissue due to intravoxel contribution from fat signal on non–fat-suppressed DWI. This ADC underestimation was more pronounced for normal tissue values (mean difference=40%) than for tumors (mean difference=27%, P<.001) and was worse in women with low breast tissue density vs. those with extremely dense breasts (P<.05 for both tumor and normal tissue). Tumor conspicuity measured by contrast-to-noise ratio was significantly higher on ADC maps created with fat suppression and was not significantly associated with breast density. In summary, robust fat suppression is important for accurate breast ADC measures and optimal lesion conspicuity on DWI.  相似文献   
37.
在一般有界区域上,建立了次线性椭圆方程广义Dirichlet问题改进的正解估计和有界强解的存在性定理.  相似文献   
38.
The MR findings in a 32-year-old man with pancreatic VIPoma and liver metastases are described. A 2-cm mass was present in the region of the tail of the pancreas that was best shown on T1-weighted fat-suppressed images as a low-signal intensity mass. Multiple liver metastases were present that showed intense peripheral ring enhancement on immediate post gadolinium spoiled gradient echo images.  相似文献   
39.
STABILIZATIONOFUNITARYGROUPSOVERPOLYNOMIALRINGS¥YOUHONGAbstract:Theauthorstudiesthestabilizationfortheunitarygroupsoverpolyno...  相似文献   
40.
The transition from regular reflection (RR) to Mach reflection (MR) as a plane shock wave diffracts around a triangular mountain of 45° inclination is analysed in this paper, both by optical measurement in a shock tube and by numerical simulation the numerical method developed by Li Yingfan[1] is of the FLIC type with triangular mesh. The dependence of the critical transition point Lk ofRR→MR on shock Mach numberM i is analyzed and the variations of the incidence angle ω i of the impinging shock and the reflection angle ω r with the distanceL * are investigated. Our experimental and numerical results agree well with the theoretical results of Iton and Italya.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号