首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2277篇
  免费   92篇
  国内免费   212篇
化学   980篇
晶体学   26篇
力学   111篇
综合类   10篇
数学   373篇
物理学   1081篇
  2024年   11篇
  2023年   27篇
  2022年   24篇
  2021年   33篇
  2020年   34篇
  2019年   52篇
  2018年   30篇
  2017年   36篇
  2016年   42篇
  2015年   45篇
  2014年   88篇
  2013年   173篇
  2012年   92篇
  2011年   161篇
  2010年   131篇
  2009年   184篇
  2008年   176篇
  2007年   171篇
  2006年   138篇
  2005年   110篇
  2004年   106篇
  2003年   93篇
  2002年   82篇
  2001年   39篇
  2000年   60篇
  1999年   57篇
  1998年   49篇
  1997年   47篇
  1996年   38篇
  1995年   27篇
  1994年   31篇
  1993年   16篇
  1992年   22篇
  1991年   29篇
  1990年   15篇
  1989年   12篇
  1988年   4篇
  1987年   8篇
  1986年   10篇
  1985年   13篇
  1984年   15篇
  1983年   14篇
  1982年   8篇
  1981年   11篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
排序方式: 共有2581条查询结果,搜索用时 15 毫秒
11.
We defined conditions of the laser-aided formation of nanoporous structures with nanopores ranging in size from 40 to 50 nm using laser pulses of 10.6 μm wavelength at a pulse-repetition rate of up to (4-5)×103 Hz for a model metallic material (a two-component alloy “brass of 62%”). It has been established that the exposure to a uniform laser light at depths of up to 25-30 μm results in the formation of nanopores with a relatively uniform distribution across the surface. The resulting pattern contains both solitary pores and ramified porous channels. The nanopores are uniformly distributed within a subgrain, being fairly stable in size and shape. The nanopore size and shape feature larger non-uniformity on the subgrain boundary. The resulting metallic structures show promise for use as catalysts and ultrafiltration membranes.  相似文献   
12.
Double-Pulsed-Field-Gradient (d-PFG) MR is emerging as a powerful new means for obtaining unique microstructural information in opaque porous systems that cannot be obtained by conventional single-PFG (s-PFG) methods. The angular d-PFG MR methodology is particularly important since it can utilize the effects of microscopic anisotropy (μA) and compartment shape anisotropy (csA) in the E(ψ) profile at the different tm regimes to provide detailed information on compartment size and eccentricity. An underlying assumption is that the PFGs that are imparted to weigh diffusion are the only gradients present; however, in realistic systems and especially where there are randomly oriented anisotropic pores, susceptibility effects may induce strong internal gradients. In this study, the effects of such internal gradients on E(ψ) plots obtained from angular d-PFG MR and on microstructural information that can be obtained from s-PFG and d-PFG MR were investigated. First, it was found that internal gradients induce a bias in the s-PFG MR results, thus creating an anisotropy that is not related to microstructure, termed apparent-Susceptibility-Induced-Anisotropy (aSIA). We then show that aSIA effects are also manifest in different ways in the angular d-PFG MR experiment in controlled phantoms and in realistic systems such as quartz sand, emulsions, and biological systems. The effects of aSIA in some cases completely masked the effects of μA and csA; however, we subsequently show that by introducing bipolar gradients to the d-PFG MR (bp-d-PFG), the effects of aSIA can be largely suppressed, restoring the E(ψ) plots that are expected from the theory along with the microstructural information that it conveys. We conclude that when specimens are characterized by strong internal gradients, the novel information on μA and csA that is manifest in the E(ψ) plots can indeed be inferred when bp-d-PFG MR is used, i.e. when bipolar gradients are applied.  相似文献   
13.
M. Inamura  T. Komeda 《Surface science》2007,601(4):1072-1078
We have investigated the barrier energy for an ammonia molecule to penetrate into ice film by the use of infrared spectroscopy and Xe supersonic beam. After the ice film on a Pt(1 1 1) surface is exposed to ammonia molecules, an umbrella mode of ammonia molecules adsorbed on the ice film has been observed in infrared spectra. After the irradiation of accelerated Xe beam, we observed an energy shift of the mode of ammonia. The shifted mode is assigned to that of ammonia molecules at the interface between the ice film and the Pt(1 1 1) surface. This indicates that the collision with Xe beam induced the penetration of an ammonia molecule to the interface through the ice film. Using this feature, we estimate a barrier for penetration as 0.28 ± 0.03 eV which is much smaller than the one previously reported for bulk ice.  相似文献   
14.
We examine the behaviour of the concentration profiles of particles with repulsive interactions diffusing on a host lattice. At low temperature, the diffusion process is strongly influenced by the presence of ordered domains. We use mean field equations and Monte-Carlo simulations to describe the various effects which influence the kinetic behaviour. An effective diffusion coefficient is determined analytically and is compared with the simulations. Finite gradient effects on the ordered domains and on the diffusion are discussed. The kinetics studied is relevant for superionic conductors, for intercalation and also for the diffusion of particles adsorbed on a substrate. Received: 26 June 1997 / Revised: 18 September 1997 / Accepted: 10 November 1997  相似文献   
15.
A. Berk    F. Solymosi 《Surface science》1998,400(1-3):281-289
A method for independent control of the particle size and distance is presented for rhodium epitaxy on TiO2(110)-(1×2) surface. The real space imaging of the surface morphology was performed by scanning tunneling microscopy. The amount of the deposited rhodium was checked by Auger electron spectrometry. The method consists of two steps: (i) evaporation of 0.001–0.050 ML equivalent of rhodium at room temperature with a post-annealing at 1100 K (“seeding”); (ii) post-deposition of rhodium for growing of the Rh nanoparticles formed in step (i) (“growing”). The mechanism of this procedure is based on the large difference of the surface diffusion coefficient between Rh adatoms and Rh nanocrystallites larger than 1–2 nm. In the first step the average distance between the metal particles is controlled in the range 5–200 nm, the second step determines the particles size (2–50 nm). This work demonstrates that the diffusion processes of metal nanoparticles of different sizes and the growing modes of the crystallites can be studied in detail by application of seeded surfaces.  相似文献   
16.
Zirconium and particularly Zr-2.5 wt%Nb (Zr2.5Nb) alloy are useful for engineering bearing applications because they can be oxidized in air to form a hard surface ceramic. Oxidized zirconium (OxZr) due to its abrasion resistant ceramic surface and biocompatible substrate alloy has been used as a bearing surface in total joint arthroplasty for several years. OxZr is characterized by hard zirconium oxide (oxide) formed on Zr2.5Nb using one step thermal oxidation carried out in air. Because the oxide is only at the surface, the bulk material behaves like a metal, with high toughness. The oxide, furthermore, exhibits high adhesion to the substrate because of an oxygen-rich diffusion hardened zone (DHZ) interposing between the oxide and the substrate.In this study, we demonstrate a two step process that forms a thicker DHZ and thus increased depth of hardening than that can be obtained using a one step oxidation process. The first step is thermal oxidation in air and the second step is a heat treatment in vacuum. The second step drives oxygen from the oxide formed in the first step deeper into the substrate to form a thicker DHZ. During the process only a portion of the oxide is dissolved. This new composition (DHOxZr) has approximately 4-6 μm oxide similar to that of OxZr. The nano-hardness of the oxide is similar but the DHZ is approximately 10 times thicker. The stoichiometry of the oxide is similar and a secondary phase rich in oxygen is present through the entire thickness. Due to the increased depth of hardening, the critical load required for the onset of oxide cracking is approximately 1.6 times more than that of the oxide of OxZr. This new composition has a potential to be used as a bearing surface in applications where greater depth of hardening is required.  相似文献   
17.

Purpose

To evaluate the use of the intravoxel incoherent motion (IVIM) technique in half-Fourier single-shot turbo spin-echo (HASTE) diffusion-weighted imaging (DWI), and to compare its accuracy to that of apparent diffusion coefficient (ADC) to predict malignancy in head and neck tumors.

Patients and methods

HASTE DW images of 33 patients with head and neck tumors (10 benign and 23 malignant) were evaluated. Using the IVIM technique, parameters (D, true diffusion coefficient; f, perfusion fraction; D*, pseudodiffusion coefficient) were calculated for each tumor. ADC values were measured over a range of b values from 0 to 1000 s/mm2. IVIM parameters and ADC values in benign and malignant tumors were compared using Student's t test, receiver operating characteristics (ROC) analysis, and multivariate logistic regression modeling.

Results

Mean ADC and D values of malignant tumors were significantly lower than those of benign tumors (P < 0.05). Mean D* values of malignant tumors were significantly higher than those of benign tumors (P < 0.05). There was no significant difference in mean f values between malignant and benign tumors (P > 0.05). The technique of combining D and D* was the best for predicting malignancy; accuracy for this model was higher than that for ADC.

Conclusions

The IVIM technique may be applied in HASTE DWI as a diagnostic tool to predict malignancy in head and neck masses. The use of D and D* in combination increases the diagnostic accuracy in comparison with ADC.  相似文献   
18.
Li Zhang  Xinxin Ma 《Physics letters. A》2010,374(21):2137-1979
Argon ion irradiation enhanced diffusion between Cu and Ni was found beyond the radiation effect zone in classical theory. The enhanced diffusion effect attenuates along with the distance between the diffusion zone and the radiated surface. An interpretation based on irradiation induced discrete breathers was employed as a possible mechanism.  相似文献   
19.
Explicit propagators are given for a diffusing particle (motor) moving on a linear chain of either infinity or finite length with reflecting ends. Each chain contains a number of thermally accessible barriers and/or potential wells (active sites). All particle interactions with its environment are considered to be short-range and are described by repulsive/attractive delta function potentials. By employing perturbation expansion, closed analytical expressions for the spatio-temporal evolution of the probability density function of the motor are derived, and are valid up to second order with respect to the expansion parameter u, which denotes the strength of interaction between motor and active sites. The mean displacement for two different chains is calculated indicating in both cases that the organization of the motion is done through the interplay of interaction intensities and their positions.  相似文献   
20.
Transport properties of glass-formers near glass transition reflect the varying degrees of the sensitivity of the solid-like dynamics and structures with respect to temperature, depending on their fragility. Notably, however, most glasses resume Arrehenius transport behavior upon onset of vitrification. To address this phenomenon a theory of the self-diffusion coefficient and viscosity is developed on the basis of a model constructed for the generalized excluded volume of glass-formers described by the generic van der Waals equation of state. The molecular clustering behavior of a glass-former is exploited in terms of an order parameter that measures the concentration of glassy, clustered molecules, which is then related to the excluded volume. The formulas arrived therefrom are shown to excellently account for the self-diffusion coefficient and viscosity of various glass-formers over the entire fragility spectrum studied experimentally: e.g., GeO2GeO2, silica, ethanol, glycerol, diopside, propylene carbonate, oo-terphenyl, tris-napthylbenzene, toluene, and so on. The excluded volume effect thus investigated is shown to essentially characterize the fragility of the glass-formers. The resulting theory not only predicts for fragile glass-formers to resume Arrehenius transport behavior upon the onset of the glass transition, but also explains a crossover between strong and fragile glass-formers in their diffusivity and viscosity profiles as vitrification sets in.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号