首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   29篇
  国内免费   2篇
化学   40篇
晶体学   4篇
力学   155篇
综合类   1篇
数学   70篇
物理学   299篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2020年   6篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   13篇
  2015年   9篇
  2014年   15篇
  2013年   33篇
  2012年   12篇
  2011年   19篇
  2010年   18篇
  2009年   64篇
  2008年   73篇
  2007年   56篇
  2006年   44篇
  2005年   20篇
  2004年   27篇
  2003年   19篇
  2002年   19篇
  2001年   14篇
  2000年   13篇
  1999年   10篇
  1998年   20篇
  1997年   8篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1969年   1篇
排序方式: 共有569条查询结果,搜索用时 15 毫秒
91.
从薄板弹性理论出发,对可实现曲率变化的环形线负载驱动模型进行分析,给出了基于该模型的大镜厚比变曲率反射镜的形变方程.以较小的驱动力实现较大的中心形变为目标,利用MATLAB软件对不同反射镜厚度、驱动环半径下的反射镜形变情况进行模拟计算,结果表明,反射镜厚度范围在2~4 mm之间、驱动环半径数值在反射镜有效半径1/2处最佳.以此为依据,设计并研制了口径为100 mm、厚度为3 mm的铍青铜环形线负载驱动变曲率反射镜结构及原型样片,给出了变曲率反射镜整体结构前10阶的振动模态分析结果.完成装配后,反射镜原型样片的面形精度接近λ/30(λ为波长).对该结构进行极限曲率变化和面形精度保持的验证实验,通过对变曲率反射镜结构进行改进,环形线负载驱动能够实现超过30个波长(632.8 nm)的中心形变,且面形精度的变化与反射镜中心矢高的变化呈弱相关.  相似文献   
92.
A new regime of chemical oxygen-iodine laser (COIL), high-pressure subsonic mode operation, was demonstrated using a jet-type singlet oxygen generator (SOG). The laser output power of 342 W with chemical efficiency of 20.9% was obtained at the Cl2 flow rate of 18 mmol/s and the operating pressure of 6.4 Torr in the laser cavity. The specific energy was 3.1 J/l which was four times higher than our supersonic device, and was comparable to the highest value for the supersonic regime. The experimental results were in good agreement with the numerical simulation results. Received: 26 February 1999 / Revised version: 13 July 1999 / Published online: 30 November 1999  相似文献   
93.
In this paper, a solution for the equilibrium configuration of an elastic beam subject to three-point bending is given in terms of Jacobi elliptical functions. General equations are derived, and the domain of the solution is established. Several examples that illustrate a use of the solution are discussed. The obtained numerical results are compared with the results of other authors. An approximation formula by which the beam load is given as a polynomial function of beam deflection is also derived. The range of applicability of the approximation is illustrated by numerical examples.  相似文献   
94.
While a general consensus exists that the morphogenesis of living organisms has its roots in genetically encoded information, there is a big debate about the physical mechanisms that actually mediate its control. In embryo development, cells stop proliferating at homeostasis, a target state in terms of physical conditions that can represent, for instance, the shape and size of an organ. However, while control of mitosis is local, the spatial dimension of a tissue is a global information. How do single cells get aware of that at the same time? Which is their communication mechanism? While morphogen factors are demonstrated to play a key role in morphogenesis, and in particular for shape emergence, they seem unable to produce a global control on size by themselves and, conversely, many recent experiments suggest that active mechanics plays a role. Here we focus on a paradigmatic larval structure: the imaginal disc that will become the wing of the fruit fly. By a formalization of theoretical conjectures in terms of simple mathematical models, we show that inhomogeneous stress, likely dictated by morphogenetic patterns, is an admissible mechanism to convey locally the global information of organ size.  相似文献   
95.
It has been known for decades that crystal stress directions move toward the vertices of the single crystal yield surface (SCYS) during plastic flow of polycrystalline solids to satisfy the deformation compatibility among crystals. The alignment of crystal stress with a SCYS vertex is affected not only by plastic anisotropy, but also by other factors such as elastic anisotropy, loading direction, and grain interactions. Among the factors contributing to the degree of alignment, the effect of phase interactions on the crystal stress evolution during plastic flow has not been extensively investigated. In this research, the effect of phase interactions on the crystal stress direction evolution is investigated using simulations of an elastoplastically deforming two-phase (Cu/Fe) polycrystalline solid calibrated to a neutron diffraction experiment. By mapping the simulated crystal stresses over the crystal orientation space, crystal-orientation-dependent nonuniform partitioning of the crystal stress between phases can be observed. An analysis of the distribution of angles between the SCYS vertex and the crystal stress based on the simulation of the two-phase material shows that the crystal stress evolution pattern during plastic flow is strongly affected by phase interactions. These interactions result in low alignment and greater dispersion angles between the crystal stresses and SCYS vertices, particularly in the strong phase.  相似文献   
96.
Boley's method is utilized in order to show that the elementary Bernoulli–Euler beam theory can be enhanced such that exact solutions of the plane-stress theory of linear elasticity are obtained for force loaded rectangular beams. An equivalent enhancement is derived for the elementary Timoshenko theory of beams. The enhancement terms act analogous to thermal loadings; they follow from the force loading of the rectangular beam in an explicit form. The resulting boundary value problem of fourth order can be efficiently solved by means of symbolic computer codes. As an illustrative example, a redundant beam is studied, which is simply supported at one end, and which is clamped at the other end. Outcomes for three alternative clamped end boundary conditions are compared.  相似文献   
97.
This paper proposes a three-dimensional system for modelling stress in thin films deposited on plane substrates much thicker than the film itself. The approach is the minimization of the deformation energy of the sample (substrate + film), considering the deformed substrate as a small spherical surface with large curvature radius. Results of the model show the validity limits of the well-established Stoney equation that satisfy the upper theoretical limit of Poisson ratio (ν) for isotropic materials. Our main result is that the stress values obtained in general literature using Stoney equation are underestimated when considering a typical Poisson ratio for substrates in the range of 0.25 ≤ νs ≤ 0.4.  相似文献   
98.
18Ni-maraging steel has been entirely nanocrystallized by a series of processes including solution treatment, hot-rolling deformation, cold-drawn deformation and direct electric heating. The plasma nitriding of nanocrystallized 18Ni-maraging steel was carried out at 410 °C for 3 h and 6 h in a mixture gas of 20% N2 + 80% H2 with a pressure of 400 Pa. The surface phase constructions and nitrogen concentration profile in surface layer were analyzed using an X-ray diffractometer (XRD) and the glow discharge spectrometry (GDS), respectively. The results show that an about 2 μm thick compound layer (mono-phase γ′-Fe4N) can be produced on the top of the surface layer of nanocrystallized 18Ni-maraging steel plasma nitrided at 410 °C for 6 h. The measured hardness value of the nitrided surface is 11.6 GPa. More importantly, the γ′-Fe4N phase has better plasticity, i.e., its plastic deformation energy calculated from the load-displacement curve obtained by nano-indentation tester is close to that of nanocrystallized 18Ni-maraging steel. Additionally, the mechanical properties of γ′-Fe4N phase were also characterized by first-principles calculations. The calculated results indicate that the hardness value and the ratio of bulk to shear modulus (B/G) of the γ′-Fe4N phase are 10.15 GPa and 3.12 (>1.75), respectively. This demonstrates that the γ′-Fe4N phase has higher hardness and better ductility.  相似文献   
99.
We investigate theoretically the spin-polarized electron transport for a wide-narrow-wide (WNW) quantum wire under the modulation of Rashba spin-orbit interaction (SOI). The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin-polarized electron transport is taken into account simultaneously via the spin-resolved lattice Green function method. It is found that a very large vertical spin-polarized current can be generated by the SOI-induced effective magnetic field at the structure-induced Fano resonance even in the presence of strong disorder. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOI strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field.  相似文献   
100.
The equilibrium lattice constants, cell volumes, densities of states and electron density distributions of LaNi4.5Sn0.5 crystal are evaluated by the density functional theory using the plane wave pseudopotential (PW-PP) method. The quasi-harmonic Debye model, using a set of total energy versus cell volume obtained from the PW-PP method, is applied to the study of thermal and vibrational effects. We have analyzed the bulk modulus of LaNi4.5Sn0.5 as a function of temperature up to 1000 K. The thermodynamic properties such as thermal expansion coefficients and heat capacities are also predicted using the quasi-harmonic Debye model. Significant differences in properties are observed at high temperatures and pressures. Moreover, the Debye temperatures are determined from the non-equilibrium Gibbs functions. The calculated results are in excellent agreement with the available experimental data, and compared favorably with other theoretical results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号