首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   2篇
  国内免费   36篇
化学   147篇
晶体学   1篇
力学   3篇
物理学   11篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   14篇
  2012年   5篇
  2011年   6篇
  2010年   7篇
  2009年   11篇
  2008年   19篇
  2007年   16篇
  2006年   12篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有162条查询结果,搜索用时 10 毫秒
21.
Three-layer gelatin films, composed of sodium montmorillonite (MMt) - plasticized gelatin (Ge-5MMt) (inner layer) and dialdehyde starch (DAS) - cross-linked and plasticized gelatin films (Ge-10DAS) (outer layers), obtained by heat-compression molding, were submitted to degradation under indoor soil burial conditions for 14 days. Biodegradation of multilayer film as well as individual components and control gelatin films was evaluated by monitoring water absorption and weight loss. It was established that technological treatments performed on gelatin, such as cross-linking, compounding with clay and heat-compression molding have a major impact on the biodegradation rate and extent. The possible reasons are discussed. Weight loss results revealed that the susceptibility to microbial attack during soil burial varied in the order: Ge-10DAS < multilayer < Ge-5MMt < gelatin control film. The intermediate behaviour of the multilayer was associated with the presence of hydrogen-bonding interactions between layers, induced by processing. Scanning electron microscopy revealed that the multilayer was preferentially biodegraded by filamentous microorganisms and even larvae in the later stages of the process. The presence of holes and pits on the multilayer surface was more likely attributed to the preferential removal of glycerol and DAS as shown by thermogravimetric analysis.  相似文献   
22.
与线性聚合物相比,交联聚合物因其复杂的结构而具有特殊的性能[1~3].壳聚糖是甲壳素的N-脱乙酰基产物,具有良好的生物相容性、无毒性和生物可降解性等特点[4],在食品、医药及水处理等领域中广泛应用[5~7].在实际应用中,经常将各种单体接枝到聚合物表面,由于单体的均聚反应影响接  相似文献   
23.
以PVC,TPU为主要原料,加入发泡剂AC,交联剂DCP,空心玻璃微珠及其他助剂经模压成型制备了PVC/TPU轻质材料.通过密度以及机械性能测试研究了TPU用量、DCP用量和空心玻璃微珠含量对PVC/TPU轻质材料性能的影响,用红外光谱研究材料基团的变化,通过凝胶含量测试交联体系凝胶量,用SEM扫描电镜表征了材料的泡孔形状、尺寸以及排列.聚酯型TPU能够提高轻质材料弯曲和冲击强度,TPU加入10份时,共混体系的表观密度最低,为0.30 g/cm3.表观密度随着交联剂DCP的添加先降低后增大,红外表征和凝胶含量测试证实轻质材料体系产生了交联结构.空心玻璃微珠的加入,使得PVC/TPU轻质材料的表观密度和综合机械性能提高明显,即使加入20份空心玻璃微珠密度始终小于1.0 g/cm3.SEM表明,DCP的加入使得泡孔更完整且不易破孔,泡孔壁更厚;空心玻璃微珠分布在泡孔壁上,起到引发泡孔和支撑负荷的作用.  相似文献   
24.
 In an attempt to produce biodegradation materials, poly(vinyl alcohol) (PVA)–starch (ST) blends were prepared by gelation/crystallization from semidilute solutions in dimethyl sulfoxide (Me2SO) and water mixtures and elongated up to 8 times. The content of mixed solvent represented as Me2SO/H2O (volume percent) was set to be 60/40 assuring the greatest drawability of PVA homopolymer films. The PVA/ST compositions chosen were 1/1, 1/3, and 1/5. The elongation up to 8 times could be done for the 1/1 blend but any elongation was impossible for blends whose ST content was beyond 50%. When the blends were immersed in water at 20 or 83 °C, the solubility became considerable for an undrawn blend with 1/5 composition and a drawn 1/1 blend with λ=8. To avoid this phenomenon, cross-linking of PVA chains was carried out by formalization under formaldehyde vapor. Significant improvement could be established by the cross-linking of PVA chains. For the 1/1 blend, the amount of ST dissolved in water at 23 °C was less than 3% for the undrawn state and 25% for the drawn film. The decrease in the ST content was enough for use as biodegradation materials. Namely, the water content relating to the biodegradation in soil is obviously different from such a serious experimental condition that a piece of blend film was immersed in a water bath. At temperatures above 0 °C, the storage modulus of the formalization blends became slightly higher than those of the nonformalization blends. The Young's modulus of the drawn films with a draw ratio of 8 times was 2 GPa at 20 °C. Received: 23 June 2000 Accepted: 30 October 2000  相似文献   
25.
 The chemical synthesis and the physicochemical properties of stable poly(vinyl formamide-co-vinyl amine)/silica hybrid particles are presented. Copolymers of poly(vinyl formamide) (PVFA) and poly(vinyl amine) (PVAm) and their protonated forms were adsorbed onto silica from aqueous solutions. The influences of the pH strength and the ion concentration of the aqueous solution as well as the copolymer composition (degree of hydrolyzation of PVFA), and the molecular mass on the adsorption process were investigated by electrokinetic measurements, potentiometric titration, and quantitative elemental analyses. Silica surface-charge neutralization is achieved at a pH strength above 10 for highly hydrolyzed (95%) PVFA polymers. Decreasing the amino content in the PVAm chain shifts successively both the point of zero charge and the isoelectric point to lower pH values. PVFA-co-PVAm layers onto silica are adsorbed weakly. To fix these layers irreversibly, cross-linking reactions with (4,4′-diisocyanate)diphenyl methane were carried out on the surface of solid PVFA-co-PVAm/silica hybrid particles suspended in acetone. The cross-linking reaction, which is connected with the conversion of amino groups, is also a tool to control the surface charge of the PVFA-co-PVAm/silica hybrids. X-ray photoelectron spectroscopy and solid-state 13C cross-polarization magic-angle spinning NMR spectroscopy were used to obtain information on the number of and the structure of the functionalized polyelectrolyte layers on silica. The success of cross-linking was also shown by the results of these spectroscopic methods. Received: 28 June 1999 /Accepted: 27 August 1999  相似文献   
26.
A series of poly(dimethylsiloxane)-zinc oxide (PDMS-ZnO) nanocomposites having different concentrations of ZnO nanoparticles (0, 1, 5, 10 and 20 wt%) have been prepared. Raman and FTIR-ATR spectroscopic analysis was performed in order to determine the interaction between the ZnO nanoparticles and PDMS polymer matrix. Density functional theory (DFT) using the (B3-LYP)/6-311++G(2df,2p) method was used to investigate the vibrational spectra of PDMS. A complete vibrational assignment is supported by the normal coordinate analysis, calculated Raman activities as well as IR intensities.The presence of ZnO nanoparticles in PDMS gives rise to significant differences in relative intensities of the characteristic vibrational bands with respect to the cross-linked polymer. The changes in relative intensities of Raman bands, as well as swelling measurements, were used to explain the effect of ZnO nanoparticles on the cross-linked structure of PDMS nanocomposites. It is established that ZnO nanoparticles influence the cross-linking density of the polymer matrix.  相似文献   
27.
用水热法合成出铁皂石和铁镍皂石,用羟基铝作交联剂制备了交联粘土.经XRD、DTA、IR、TPR、Mssbauer谱和化学分析表征,证明铁进入了粘土层骨架,铝交联可能作用在四面体铁上.形成Al_p-O-Fe键.  相似文献   
28.
以XRD、MAS NMR、IR和化学分析等方法研究了镓取代皂石及其羟基铝低聚物交联物。结果表明,Ga占据骨架四面体位置,影响四面体层电荷及Al柱的交联密度。交联物经焙烧后,Al柱与层形成Ga—O—Al_p键,实现了层与柱的交联,而Al_(13)基本结构不变。  相似文献   
29.
IntroductionIt is well known that amphiphilic block copolymerscan self-assemble in block-selective solvent to formcore-shell micelle or colloidal size aggregates[1—5].Usually the micelle are preparedviatraditional dialysismethod[6—8]. Besides micellizat…  相似文献   
30.
Chitosan has been widely used in a variety of biomedical applications including peripheral nerve repair because of its excellent mechanical properties and biocompatibility. However, chitosan itself has a very slow degradation rate, and its molecules degrade in an uncontrollable manner. We hypothesized that the cross-linking of carboxymethyl chitosan (CM-chitosan), which is soluble in water, would result in a higher degradation rate in lysozyme solutions, while retaining its excellent mechanical properties and nerve cell affinity. In this study, we characterized the constructed matrix formed using a combination of carboxymethylation of chitosan chains and thereafter 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) cross-linking. Specifically, after EDC cross-linking, the hydrophilicity and elastic modulus of the CM-chitosan films decreased. These changes are beneficial in the application of chitosan derivatives for nerve repair. The porous conduits degraded to 30% in weight during eight weeks of incubation in lysozyme solution (pH 7.4, 37 °C). In addition, the cross-linked CM-chitosan films enhanced the spread of Neuro-2a cells and provided a good proliferation substratum for Neuro-2a cells, as compared to chitosan films. Therefore, cross-linking with EDC is a promising way to modify chitosan derivatives for peripheral nerve regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号