首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1025篇
  免费   40篇
  国内免费   185篇
化学   1155篇
晶体学   3篇
力学   2篇
综合类   6篇
数学   2篇
物理学   82篇
  2024年   2篇
  2023年   138篇
  2022年   61篇
  2021年   48篇
  2020年   36篇
  2019年   25篇
  2018年   25篇
  2017年   43篇
  2016年   42篇
  2015年   26篇
  2014年   24篇
  2013年   73篇
  2012年   49篇
  2011年   48篇
  2010年   45篇
  2009年   72篇
  2008年   59篇
  2007年   55篇
  2006年   48篇
  2005年   48篇
  2004年   27篇
  2003年   24篇
  2002年   27篇
  2001年   28篇
  2000年   27篇
  1999年   18篇
  1998年   23篇
  1997年   17篇
  1996年   18篇
  1995年   21篇
  1994年   11篇
  1993年   19篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有1250条查询结果,搜索用时 109 毫秒
131.
In this study, we developed a tailored capillary sorbent for bilirubin removal. For immobilized bioligand, capillaries were grafted with epoxy groups using RIGP. The HSA immobilized capillaries has a high affinity adsorption capacity (71.2 mg bilirubin/g polymer) and a shorter adsorption equilibrium time (about 60 min).  相似文献   
132.
Plasma treatments in Radio Frequency Glow Discharges fed with NH3−H2 mixtures have been performed for modifying polyethylene surfaces. Treatment kinetics and the role of species present in the glow have been investigated. Actinometric Optical Emission Spectroscopy has been utilized as a plasma diagnostic technique. Electron Spectroscopy for Chemical Analysis has been utilized for studying surface composition of treated substrates, which have been examined both astreated and after derivatization of amine-functionalities with 4-trifluoromethylbenzaldehyde vapors. It has been found that experimental plasma parameters and plasma density of active species can be controlled to achieve selective grafting of-NH2 among all other nitrogen-containing groups.  相似文献   
133.
We prepared two batches of surface‐enriched (with active sites) polymer‐supported phase‐transfer catalysts (SE‐PSPTC) by fixing the crosslinking monomer divinylbenzene (DVB) at 2% (first batch) and 6% (second batch) through a free‐radical suspension copolymerization method with vinylbenzyl chloride (VBC; 25%) as a functionality and with styrene (St) as a supporting monomer, followed by the quaternization of the resulting terpolymer beads with triethylamine. The enrichment of the active sites on the surfaces of the beads was accomplished by a surface‐grafting technique through the delayed addition of the functional monomer (VBC) to the partially polymerized copolymer beads of poly(St/DVB). To bring the active sites fully onto the surfaces, we prepared six different types of terpolymer beads in each batch by varying the partial polymerization time (PPT) of St/DVB—0 h [0 VBC (conventional)], 3 h (3 VBC), 6 h (6 VBC), 9 h (9 VBC), 12 h (12 VBC), and 15 h (15 VBC)—and then gradually adding the functional monomer (VBC) to the partially polymerized poly(St/DVB) system. The resulting terpolymer beads, containing different concentrations of pendant benzyl chloride (? CH2Cl) on the surface in each batch, underwent facile quaternization [? CH2N+(C2H5)3Cl?] with an increase in the PPT of St/DVB and remained constant at 12 VBC and 15 VBC. To asses the superiority of the catalysts according to the surface enrichment of the active sites, particularly between conventional (0 VBC) catalysts and other PPT‐based SE‐PSPTCs, we characterized all the catalysts by estimating the chloride‐ion concentration, by using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), EDAX, and ESCA, and by carrying out the dichlorocarbene addition to olefins. The chloride‐ion concentration by the Volhard method and the peak intensity of the C? N stretching absorbance concentration, that is, the quaternary onium group in the FTIR spectra of both batches, increased with the PPT of St/DVB in both batches of catalysts. In particular, the chloride concentration of a first‐batch catalyst of a representative mesh size (?120 + 140) had a twofold enhancement between the conventional catalyst (0 VBC; 1.88 m equiv g?1) and 9 VBC/SE‐PSPTC (3.74 m equiv g?1), although the same amount of the functional monomer was added in both preparations. These results showed the higher enrichment of the active site on the surface of 9 VBC, and the same trend was also maintained for second‐batch catalysts, regardless of the catalyst mesh size. SEM images of both batches showed that there was a higher concentration of nodules [due to the grafting of poly(VBC)] on the surfaces of the beads of 9 VBC/SE‐PSPTC and the aforementioned PPT catalysts than on the surfaces of the conventional catalysts (0 VBCs), which exhibited smooth surfaces (because of the simultaneous addition of all three monomers). This observation confirmed the enrichment of active sites on the surfaces. In the EDAX analysis, up to a depth of 0.5–1 μm, the surface chloride concentration increased from 0 VBC to 9 VBC/SE‐PSPTC and remained constant in 12 VBC and 15 VBC, first‐batch catalysts of a representative mesh size (?120 + 140). The same trend was also observed in second‐batch catalysts, indicating the enrichment of the onium group more on the surface in 9 VBC/SE‐PSPTCs. The ESCA analysis, to a depth of about 20–30Å, proved that the concentration of covalent chloride on the surface had increased from 0 VBC (15%) to 9 VBC/SE‐PSPTCs (29%) and remained constant thereafter in first‐batch catalyst; the trend was the same for second‐batch catalysts, also confirming the strong evidence of surface enrichment of the active sites. Similarly, the rate constants of different olefin addition reactions catalyzed by both batches of catalysts also increased from 0 VBC to 9 VBC and remained constant with 12 VBC and 15 VBC catalysts. The twofold increase of the rate constants, regardless of the olefins, for conventional catalysts to 9 VBC/SE‐PSPTCs confirmed the enrichment of the active sites on the surfaces. All these experimental observations proved that 50% of the active sites were successfully brought out from inside the poly(St/DVB) networks to the exterior surfaces, although same amount of VBC was added for the preparation of all the catalyst types. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 347–364, 2003  相似文献   
134.
Acrylic acid (AA) and diethyleneglycol-dimethacrylate (DEGDM) are grafted onto 25 μm low-density radio-peroxided polyethylene. Monomer content is determined by exchange capacity measurements. Studies of electrical resistance and zero-current membrane potential allow for the determination of the influence of DEGDM on both the dissociation of grafted AA and the permselectivity of these so-obtained cation-exchange membranes. DEGDM, acting as a crosslinking agent, limits the AA degree of grafting, slightly increases the electrical resistance, but contributes to enhance the permselectivity. For example, when these grafted films are immersed in 3M NaCl aqueous solutions, the addition of DEGDM leads to an increase of the transport number of Na+ close to 20%. © 1993 John Wiley & Sons, Inc.  相似文献   
135.
The morphology and the physical and mechanical properties of graft-modified polyethylene fibers have been studied. Two types of fibers, with the diameters of 10 μm (1.1 dtex) and 40 μm (7.5 dtex), were modified by radiation-induced grafting with acrylic acid. The extent of grafting was determined gravimetrically. Confirmation of gravimetrically obtained values was achieved using conductometric titration. The fibers were hydrated at pH 2 and pH 7. The degree of swelling was 120% at pH 2 and 200% at pH 7. The transversal distribution of polyacrylic acid in the fibers was determined. Fibers were stained and observed with an optical microscope. The diffusion of the monomer into the bulk was found to be rather fast. The changes in the total crystalline content and the lamellar thickness distributions in consequence of irradiation and grafting were determined by differential scanning calorimetry analysis. The measurements showed no effects of irradiation on the crystallinity in either type of fiber, whereas a decreasing crystallinity caused by grafting was noticed in the 40 μm fibers. The lamellar thickness distributions narrowed upon irradiation, indicating recrystallization as a result of chain scission. Wide angle x-ray scattering and Raman analysis of dry and hydrated fibers were conducted to study the behavior of the fibers in an aqueous environment. These results both showed a decreasing crystalline content caused by fiber hydration. Tensile tests were carried out to evaluate how grafting, hydration and Ca2+-crosslinking of grafts affected the fiber strength. Grafting and Ca2+-crosslinking, as well as hydration, resulted in a decreasing E-modulus for the 40 μm fibers, whereas no significant change could be noticed in the 10 μm fibers. © 1995 John Wiley & Sons, Inc.  相似文献   
136.
Poly(ethene-co-1-butene)-graft-methyl methacrylate-acrylonitrile (PEB-g-MAN) was prepared by suspension grafting copolymerization of methyl methacrylate (MMA) and acrylonitrile(AN) onto PEB. PEB-g-MAN/SAN resin blends (ABMS) were prepared by blending PEB-g-MAN with styrene-acrylonitrile copolymer (SAN resin). The effects of AN/(MMA+AN) feed ratio (fAN), PEB/(PEB+MMA+AN) feed ratio (fPEB) and benzoyl peroxide (BPO) dosage on the monomer conversion ratio (CR), rubber's grafting ratio (GR), grafting efficiency (GE) of the copolymerization and the toughening effect of PEB-g-MAN on the SAN resin were investigated. FTIR quantitative analysis showed that when the weight percent of AN unit in the unextracted product was 21.5 wt% with fAN of 25 wt%, the toughening effect of unextracted PEB-g-MAN on SAN resin was the highest. Gel permeation chromatography (GPC) analysis showed that when fAN was 25 wt%, the grafted copolymer had the lowest molecular weight and ABMS had highest toughness. Transmission electron microscopy (TEM) analysis showed that the highest toughness occurred when the phase structure of ABMS was cocontinuous with fAN of 25 wt%. When fAN was 25 wt% PEB-g-MAN domains have numerous small SAN domains in them, which was occlusion structure. Scanning electron microscopy (SEM) analysis indicated that the ABMS fracture surfaces had plastic flow visible, which looked like a craze fibers morphology, for the sample with highest impact strength (fAN = 25 wt%). Dynamic mechanical thermal analysis (DMA) showed that the miscibility of the PEB phase and SAN phase improved after graft copolymerization of MMA and AN onto PEB.  相似文献   
137.
In this article we provide a brief summary of computational techniques applied to investigate polymerization reactions in general, with a focus on systems under confinement and initiated from surfaces. We concentrate on two major classes of techniques, i.e., stochastic methods and molecular modeling. We describe the major principles of the two classes of methodologies and point out their strengths and weaknesses. We review a variety of studies from the literature and conclude with an outlook of these two classes of computer simulation approaches as they are applied to “grafting from” polymerizations.

  相似文献   

138.
The surface of poly(dimethylsiloxane) (PDMS) is grafted with poly(acrylic acid) (PAA) layers via surface‐initiated photopolymerization to suppress the capsular contracture resulting from a foreign body reaction. Owing to the nature of photo‐induced polymerization, various PAA micropatterns can be fabricated using photolithography. Hole and stripe micropatterns ≈100‐µm wide and 3‐µm thick are grafted onto the PDMS surface without delamination. The incorporation of PAA micropatterns provides not only chemical cues by hydrophilic PAA microdomains but also topographical cues by hole or stripe micropatterns. In vitro studies reveal that a PAA‐grafted PDMS surface has a lower proliferation of both macrophages (Raw 264.7) and fibroblasts (NIH 3T3) regardless of the pattern presence. However, PDMS with PAA micropatterns, especially stripe micropatterns, minimizes the aggregation of fibroblasts and their subsequent differentiation into myofibroblasts. An in vivo study also shows that PDMS samples with stripe micropatterns polarized macrophages into anti‐inflammatory M2 macrophages and most effectively inhibits capsular contracture, which is demonstrated by investigation of inflammation score, transforming‐growth‐factor‐β expression, number of macrophages, and myofibroblasts as well as the collagen density and capsule thickness.  相似文献   
139.
Through accumulation, mercury contamination in aquatic systems still poses serious health risks despite the strict regulations on drinking water and industrial discharge. One effective strategy against this is adsorptive removal, in which a suitably functionalized porous material is added to water treatment protocols. Thiol (SH) group-grafted structures perform commendably; however, insufficient attention is paid to the cost, scalability, and reusability or how the arrangement of sulfur atoms could affect the HgII binding strength. We used an inexpensive and scalable porous covalent organic polymer (COP-130) to systematically introduce thiol functional groups with precise chain lengths and sulfur content. Thiol-functionalized COP-130 demonstrates enhanced wettability and excellent HgII uptake of up to 936 mg g−1, with fast kinetics and exceptionally high selectivity. These Hg adsorbents are easily regenerated with HCl and can be used at least six times without loss of capacity even after treatment with strong acid, a rare performance in the domain of Hg-removal research.  相似文献   
140.
Covalent organic frameworks(COFs) are emerging photocatalysts for hydrogen evolution in water splitting in recent years. They offer a pre-designable platform to design tailor-made structures and chemically adjustable functionality in terms of photocatalysis. In this review, we summarize the recent striking progress of COF-based photocatalysts in design and synthesis. Firstly, different approaches to functionalizing building blocks, diversifying linkages, extending π-conjugation and establishing D-A conjugation are illustrated for enhancing photocatalytic activity. Next, post-modification of backbones and pores is detailed for emphasizing the synergistic catalytic uniqueness of COFs. Besides, the strategy of preparing COF-related composites with various semiconductors is outlined for optimizing the electronic properties. Finally, we conclude with the current challenges and promising opportunities for the exploration of new COF-based photocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号