首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   4篇
  国内免费   33篇
化学   109篇
力学   1篇
物理学   357篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   9篇
  2009年   36篇
  2008年   11篇
  2007年   56篇
  2006年   56篇
  2005年   29篇
  2004年   29篇
  2003年   50篇
  2002年   16篇
  2001年   18篇
  2000年   12篇
  1999年   13篇
  1998年   21篇
  1997年   25篇
  1996年   24篇
  1995年   7篇
  1994年   3篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1982年   2篇
  1977年   2篇
  1975年   1篇
排序方式: 共有467条查询结果,搜索用时 781 毫秒
91.
The dissociative chemisorption of molecular bromine on Cu(111) at 300 K has been studied using ultraviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and work function change measurements. A (√3 × √3)R30° structure is formed initially at a bromine coverage of 0.33 ML. This then converts to a (9√3 × 9√3)R30° compression structure with a coverage of 0.41 ML. The coincidence distance of the compression structure is determined entirely by the van der Waals diameter of adsorbed bromine. The applicability of using the van der Waals diameters of the three halogens, Cl, Br and I, to predict the saturation compression structures on Cu(111), is discussed.  相似文献   
92.
The adsorption of benzotriazole (BTAH or C6N3H5) on a Cu(1 1 1) surface is investigated by using first principle density functional theory calculations (VASP). It is found that BTAH can be physisorbed (<0.1 eV) or weakly chemisorbed (∼0.43 eV) onto Cu(1 1 1), and the chemical bond is formed through nitrogen sp2 lone pairs. The weak chemisorption can be stabilized by reaction with neighboring protonphilic radicals, like OH. Furthermore, the geometries and associated energies of intermolecular hydrogen bonds between adsorbates on Cu(1 1 1) are also calculated. A model of the first layer of BTAH/BTA on Cu(1 1 1) surface is developed based on a hydrogen bond network structure.  相似文献   
93.
A quantitative low energy electron diffraction (LEED) analysis has been performed for the p(2 × 2)-S and c(2 × 2)-S surface structures formed by exposing the (1 × 1) phase of Ir{1 0 0} to H2S at 750 K. S is found to adsorb on the fourfold hollow sites in both structures leading to Pendry R-factor values of 0.17 for the p(2 × 2)-S and 0.16 for the c(2 × 2)-S structures. The distances between S and the nearest and next-nearest Ir atoms were found to be similar in both structures: 2.36 ± 0.01 Å and 3.33 ± 0.01 Å, respectively. The buckling in the second substrate layer is consistent with other structural studies for S adsorption on fcc{1 0 0} transition metal surfaces: 0.09 Å for p(2 × 2)-S and 0.02 Å for c(2 × 2)-S structures. The (1 × 5) reconstruction, which is the most stable phase for clean Ir{1 0 0}, is completely lifted and a c(2 × 2)-S overlayer is formed after exposure to H2S at 300 K followed by annealing to 520 K. CO temperature-programmed desorption (TPD) experiments indicate that the major factor in the poisoning of Ir by S is site blocking.  相似文献   
94.
Y. Zou  Th. Schmidt  E. Umbach 《Surface science》2006,600(6):1240-1251
We present a detailed investigation of the interface bonding of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on Ag(1 1 1) and Ag(1 1 0) surfaces by a combination of structural and electronic techniques (SPA-LEED, STM, TPD, UPS, HR-XPS, and NEXAFS) thus obtaining a consistent picture of the adsorption behaviour of PTCDA/Ag in the monolayer regime. The interaction with silver is strong and leads to the formation of new common hybrid orbitals in the monolayer, which are interface states for PTCDA films on Ag, involving at least LUMO, HOMO, and HOMO-1, and the Ag 5s- and 4d-states. This chemisorption is based on a covalent interaction between metal and molecular states, and can unambiguously be distinguished from mere van-der-Waals bonding.  相似文献   
95.
The reactivity with ethylene of palladium clusters supported on oxidised tungsten foil has been investigated by synchrotron radiation-induced photoelectron spectroscopy and temperature programmed desorption. The effect of the heat pre-treatment of the sample on the interaction strength with ethylene is demonstrated. Already at room temperature, adsorption of ethylene causes breaking of both the C-H and C-C bonds and the appearance of a highly reactive C1 phase with unsaturated bonds. A part of this phase is oxidised to carbon monoxide by oxygen supplied by the support immediately after ethylene adsorption. Another part of ethylene is probably adsorbed in the form of ethylidyne. Heating at temperatures between 400 K and 500 K brings about the dissolution of the C1 phase in the shallow subsurface region of the Pd clusters. Further oxidation of the C1 phase by oxygen from the support proceeds at ∼600 K. Substantial reduction of the concentration of C1 phase at room temperature is observed after heat pre-treatment of the sample at 500 K, while complete suppression of the room temperature ethylene chemisorption proceeds upon heat pre-treatment at 800 K. This effect is related to thermally induced encapsulation of palladium clusters in surface tungsten oxide.  相似文献   
96.
Using density functional theory calculations we investigate the function of subsurface boron in determining surface properties of Si(0 0 1). To demonstrate its effect on surface reactivity we compare the behaviors of water adsorption on the clean and B-modified surfaces. We find that subsurface boron brings about a significant change in surface chemical properties by altering charge polarization of Si(0 0 1) locally. As a consequence, water adsorption on the B-modified surface shows a distinctively different feature from that on the clean surface.  相似文献   
97.
Photon-stimulated ion desorption from deuterated formic acid chemisorbed on Si(100) has been studied using pulsed synchrotron radiation in the energy region of the oxygen 1s electron excitation. The O 1s electrons of hydroxyl oxygen and carbonyl oxygen could be selectively excited in the O K-edge region because the chemical environments are different. It is found that the CDO+ yield is enhanced at the O 1s(C---O)→σ*(C---O) resonance and the CD+ yield at the O 1s(C=O)→σ*(C---O) resonance. The results indicate that ion desorption is related both to the antibonding character of excited molecular orbitals and the local character of core hole orbitals.  相似文献   
98.
G. S. Leatherman  R. D. Diehl   《Surface science》1997,380(2-3):455-467
Rare gas (RG) coadsorption with submonolayer amounts of Cs or K on Ag(111) was studied using low-energy electron diffraction (LEED). A crossover in the alkali-RG interaction from repulsive to attractive was observed as a function of alkali species and of alkali coverage. The K---RG interaction was observed to be repulsive at all coverages, while the Cs---RG interaction was observed to be attractive at low Cs coverages and apparently repulsive at high Cs coverages. For the K + RG adsorption system, desorption data were analyzed to determine the spreading pressure in the alkali layer, thus showing that RG can be used as a 2D manometer in some coadsorption systems. From the spreading pressure it is possible to obtain some information about the properties of the adsorbed alkali such as the energy differences between commensurate and incommensurate phases. We also demonstrate that work function measurements from such coadsorption systems do not necessarily have a simple interpretation.  相似文献   
99.
J. E. Davis  C. B. Mullins   《Surface science》1997,380(2-3):L513-L520
A direct dissociation mechanism has been traditionally assigned to molecular beam data that exhibit an increase in the initial adsorption probability with increasing kinetic energy. Yet, recent experiments of nitrogen and oxygen adsorption provide support for an alternative high kinetic energy pathway in which incident energy assists in surmounting barriers to molecular chemisorption on a surface as the first step to dissociation. Moreover, systems for which the experimental evidence supports such a mechanism also demonstrate that molecularly chemisorbed intermediates can be spectroscopically observed at low temperatures and coverages from exposure to a gas in thermal equilibrium at room temperature. Likewise, such observations have not been measured for systems which are consistent with direct dissociation. A consideration of this trend regarding the existence of molecularly chemisorbed states and the implications for the dominant, dissociative chemisorption pathway at high kinetic energy is presented for a number of gas surface systems.  相似文献   
100.
The chemisorption of CH3 on Rh(1 1 1) is studied to understand the origin of the weakened symmetric stretch mode. A few different explanations for this weakened mode have been suggested in previous studies. These include C-H bond depletion and donation into C-H anti-bond orbitals either in an upright or tilted geometry. We investigate these possibilities by performing first-principles density functional calculations. Our results show strong adsorption at all high-symmetry sites with methyl in two possible orientations. A thorough analysis of the adsorption geometry shows that C3v symmetry is preferred over a tilted species, ruling out tilting as a mechanism for C-H mode softening. Evidence of a multi-center bond between methyl and the surface rhodium atoms (similar to the kind shown recently by Michaelides and Hu for methyl on Ni(1 1 1)) is presented, showing that C-H bond depletion is the cause of mode-softening for methyl on Rh(1 1 1). Experimental results have shown that mode-softening diminishes when an electronegative species is coadsorbed, suggesting that donation into C-H anti-bonding orbitals is the mechanism for mode-softening. We therefore examine the coadsorption of oxygen and methyl on Rh(1 1 1). Our results suggest a new model for the effect of O on CH3. Analysis of charge density differences shows that the dominant initial effects of O coadsorption are the removal of charge from the C-surface bond and the transfer of charge to the C-H bond. Subsequent increase of the H-Rh distance further reduces mode softening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号