首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   0篇
  国内免费   14篇
化学   241篇
物理学   27篇
  2024年   2篇
  2023年   78篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   16篇
  2012年   4篇
  2011年   12篇
  2010年   5篇
  2009年   12篇
  2008年   8篇
  2007年   18篇
  2006年   13篇
  2005年   11篇
  2004年   16篇
  2003年   4篇
  2002年   8篇
  2001年   6篇
  2000年   3篇
  1999年   7篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
261.
The catalytic oxidation of benzyl alcohol (OBA) is one of the significant methods to produce benzaldehyde, an essential reagent in the chemical and pharmaceutical industries. However, developing an active and efficient catalyst for OBA is a tremendous challenge in commercialization. This research describes a simple, eco-friendly method for producing Fe, Pd, and Fe: Pd bimetallic nanoparticles fabricated by sol immobilization over graphene to conduct OBA. The resulting composite nano-alloys were then characterized using X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The oxidation state and elemental composition of as-fabricated nanoparticles were analyzed using XPS. The point of zero charges (pHPZC) was analyzed and the PZC value indicated that the proposed adsorbent material tends to have a positive charge. The OBA reaction efficiency (87%) of bimetallic nanocatalysts stabilized in graphene support was increased through surface modification of the ratio of both metals. The experimental error was based on three parallel tests and the carbon balance (99.6%) was analyzed during the experiments A proposed reaction mechanism of OBA validated the β-hydride step's elimination by molecular oxygen converting the metal hydride into a water molecule, forming a peroxide intermediate to form water and oxygen molecules. The Fe on the nanocatalyst’s surface is preferentially responsible for the adsorption of the substrate molecule, resulting in the formation of metal-alkoxide. Since it lacks electrons, Fe is more likely to be oxidized, allowing it to perform better than monometallic catalysts in terms of catalytic activity. The present study has great potential to be applied on an industrial scale and studied for industrialists, researchers, and academicians.  相似文献   
262.
In conventional luminol electrochemiluminescence (ECL) systems, hydrogen peroxide and dissolved oxygen are employed as typical co-reactants to produce reactive oxygen species (ROS) for efficient ECL emission. However, the self-decomposition of hydrogen peroxide and limited solubility of oxygen in water inevitably restrict the detection accuracy and luminous efficiency of luminol ECL system. Inspired by ROS-mediated ECL mechanism, for the first time, we used cobalt-iron layered double hydroxide as co-reaction accelerator to efficiently activate water to generate ROS for enhancing luminol emission. Experimental investigations verify the formation of hydroxyl and superoxide radicals in the process of electrochemical water oxidation, which subsequently react with luminol anion radicals to trigger strong ECL signals. Finally, the detection of alkaline phosphatase has been successfully achieved with impressive sensitivity and reproducibility for practical sample analysis.  相似文献   
263.
The activation of water molecules in thermal catalysis typically requires high temperatures, representing an obstacle to catalyst development for the low-temperature water-gas shift reaction (WGSR). Plasmonic photocatalysis allows activation of water at low temperatures through the generation of light-induced hot electrons. Herein, we report a layered double hydroxide-derived copper catalyst (LD-Cu) with outstanding performance for the low-temperature photo-driven WGSR. LD-Cu offered a lower activation energy for WGSR to H2 under UV/Vis irradiation (1.4 W cm−2) compared to under dark conditions. Detailed experimental studies revealed that highly dispersed Cu nanoparticles created an abundance of hot electrons during light absorption, which promoted *H2O dissociation and *H combination via a carboxyl pathway, leading to the efficient production of H2. Results demonstrate the benefits of exploiting plasmonic phenomena in the development of photo-driven low-temperature WGSR catalysts.  相似文献   
264.
265.
The transformation from metal nanocluster catalysts to metal single-atom catalysts is an important procedure in the rational design of atomically dispersed metal catalysts (ADCs). However, the conversion methods often involve high annealing temperature as well as reducing atmosphere. Herein, we reported a continuous and convenient approach to transfer Pd nanocluster into Pd single-atom in a ligand assisted annealing procedure, by which means we reduced its activating temperature low to 400 °C. Using ex-situ microscopy and spectroscopy, we comprehensively monitored the structural evolution of Pd species though the whole atomization process. Theoretical calculation revealed that the structural instability caused by remaining Cl ligands was the main reason for this low-temperature transformation. The present atomization strategy and mechanistic knowledge for the conversion from cluster to atomic dispersion provides guidelines for the rational design of ADCs.  相似文献   
266.
Efficient molecular oxygen activation (MOA) is the key to environmentally friendly catalytic oxidation reactions. In the last decade, single-atomic-site catalysts (SASCs) with nearly 100 % atomic utilization and unique electronic structure have been widely investigated for MOA. However, the single active site makes the activation effect unsatisfactory and difficult to deal with complex catalytic reactions. Recently, dual-atomic-site catalysts (DASCs) have provided a new idea for the effective activation of molecular oxygen (O2) due to more diverse active sites and synergetic interactions among adjacent atoms. In this review, we systematically summarized the recent research progress of DASCs for MOA in heterogeneous thermo- and electrocatalysis. Finally, we look forward to the challenges and application prospects in the construction of DASCs for MOA.  相似文献   
267.
Saudi Arabian’s natural diatomite samples were subjected to physical adsorption–desorption characterizations using Brunauer-Emmet-Teller (BET) and the Barrett-Joyner-Halenda (BJH), performed under heating of 140 °C for different periods of hours: 6, 12, 18, and 24 h, to create a central optimization design with surface areas and total pore distributions. Seventeen experimental runs resulted in the primary composite factor design. The surface response describes 100 % variability with a determination coefficient of 1, signifying the quadratic model with an expected correlation coefficient (R2) is satisfied with a standard deviation of 0.2322, demonstrating the high predictability of the model. Moreover, the RSM results have been validated using the t-test with the observed R2 value and adjusted R2. The model selected with higher F and p values showed<0.0001, which subsequently described the significance of the developed model. The independent components were explained with the help of 3D surface and contour plots that compare the heating time, elapsed time, pressure, and relative pressure against the dependent variable. The plots revealed that the adsorbed quantities well depended on heating time, elapsed time, pressure, relative pressure for isotherm, BET surface area, Langmuir surface area, and t-plot Micropore area.  相似文献   
268.
Solution structures of bis(phenoxy-imine) group 4 transition metal complexes (FI Catalysts) were investigated using 1H NMR spectroscopy. At least two isomers exist in equilibrium for FI Catalysts precursors, bis[N-(3-tert-butylsalicylidene)anilinato]zirconium(IV) dichloride ( 1 ), and bis[N-(3,5-dicumylsalicylidene)anilinato]zirconium(IV) dichloride ( 2 ), while bis[N-(3-tert-butylsalicylidene)-2,3,4,5,6-pentafluoroanilinato]titanium(IV) dichloride ( 3 ) exhibits only one isomer under the conditions examined. Upon activation with MAO, all FI Catalysts ( 1-3 ) generate two species at ambient temperature judging from some key signals in the 1H NMR. When temperature is raised (up to 75°C), one species ( 1a-3a ) converts irreversibly to the other species ( 1b-3b ). The resulting species, 1b-3b , are stereochemically rigid, in contrast to precursors 1 and 2 . Species 3b , derived from a living FI Catalyst, exhibited virtually no reactivity toward olefin insertion. The imine protons of species 1b-3b are temperature and solvent polarity sensitive. Two possibilities are proposed for the assignment of species 1b-3b, i) heterobinuclear complexes of group 4 metal and alkylaluminum with methyl and/or chlorine as bridging groups and ii) phenoxy-imine ligated aluminum complexes whose ligands are transferred from the group 4 metal. The latter is more probable from the separate synthesis of LAlMe2 (L: phenoxy-imine ligand). When 3 was activated with MAO in the presence of olefins, a new imine signal was observed. This species ( 3c for ethylene and 3d for propylene) is thermally more robust than 3a toward transformation to 3b and assignable to the living propagating species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号