首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34758篇
  免费   6481篇
  国内免费   4604篇
化学   20571篇
晶体学   394篇
力学   3136篇
综合类   387篇
数学   5140篇
物理学   16215篇
  2024年   92篇
  2023年   357篇
  2022年   844篇
  2021年   1039篇
  2020年   1398篇
  2019年   1221篇
  2018年   1195篇
  2017年   1357篇
  2016年   1547篇
  2015年   1387篇
  2014年   1883篇
  2013年   3008篇
  2012年   2083篇
  2011年   2165篇
  2010年   1879篇
  2009年   2165篇
  2008年   2203篇
  2007年   2276篇
  2006年   2162篇
  2005年   1806篇
  2004年   1605篇
  2003年   1476篇
  2002年   1448篇
  2001年   1212篇
  2000年   1102篇
  1999年   961篇
  1998年   907篇
  1997年   723篇
  1996年   667篇
  1995年   582篇
  1994年   487篇
  1993年   394篇
  1992年   326篇
  1991年   287篇
  1990年   188篇
  1989年   190篇
  1988年   185篇
  1987年   143篇
  1986年   140篇
  1985年   121篇
  1984年   101篇
  1983年   49篇
  1982年   91篇
  1981年   95篇
  1980年   58篇
  1979年   70篇
  1978年   36篇
  1977年   32篇
  1976年   26篇
  1974年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
氢分子在金属表面的解离吸附与氢原子在金属体相的扩散是个典型的表面过程.前者在甲烷化及合成氨等基础化工反应中起着关键作用;后者常常导致金属材料的脆化与断裂,但过渡金属及其合金是安全和优良的储氢材料.因此,研究氢分子在金属表面的解离吸附与氢原子在金属体相的扩散,是多相催化与金属物理广泛感兴趣的课题,具有重要的理论和应用价值.本文采用分子动力学方法初步探讨了二者之间的关联.分子催化动力学为从微观层次上研究上述课题提供了一种理论方法.本文采用经过我们改进的半经验LEPS方法,计算了氢分子在Pd(100)和(110)晶面的解离和氢原子在钯表面与体相扩散的相互作用位能面,并根据计算结果探讨了其微观机理.  相似文献   
992.
研究了低于300 ℃时两种氧化铈对稀燃阶段NOx存储性能的影响,催化剂由2%(w)Pt/Al2O3(PA)与CeO2-X(X=S,I)机械混合制备. X射线衍射(XRD),BET表面积和扫描电子显微镜(SEM)用于表征材料的物理结构. X射线光电子能谱(XPS)和H2程序升温还原(H2-TPR)用于表面Ce3+和活性氧定量. 原位漫反射傅里叶变换红外光谱(in-situ DRIFTS)用于分析表面NOx吸附物种. 相比于CeO2-I,CeO2-S 具有优良的物理化学性能,包括高比表面积、丰富的空隙结构、较高的抗老化能力及表面Ce3+浓度. 因而,Pt/Al2O3+CeO2-S 表现出优异的NOx存储能力. 此外,PA+CeO2-X(X=S,I)上存在Pt 与CeO2之间的相互作用,可提高表面氧物种的活性进而促进NO氧化及NOx存储. PA+CeO2-S上的这种相互作用要强于PA+CeO2-I. 研究表明,表面Ce3+浓度和活性氧含量对NOx存储起到重要作用. 然而经过水热处理后,Pt 与老化的氧化铈(ACS,ACI)之间的相互作用降低,并且两种氧化铈NOx存储性能显著下降. 另外,与PA+ACS(ACI)相比,PA+PACS(PACI)样品NOx存储能力得到改善,这归因于表面氧物种活性增加能促进硝酸盐的形成.  相似文献   
993.
The F3CCl?FH and F3CCl?FCH3 dimers, which feature the halogen–halogen contacts, are investigated at MP2/6–311++G(d,p) and MP2/aug–cc–pVDZ levels of approximation. The binding energies of these complexes are found to be comparable to those of the weak hydrogen bonds. In both complexes the Cl?F are found to be significantly shorter than the sum of the corresponding van der Waals radii. The C–Cl?F contacts are also found to exhibit certain deviation from linearity. However, the energy differences between linear and bent structures are very small and primarily accounted for by electrostatic interactions between remote parts of the dimer. This indicates a high conformational flexibility of the halogen–halogen contacts and may help to explain the diversity of structural features in crystals formed by halogen-containing molecules. In both dimers the halogen–halogen interaction leads to certain shortening of the C–Cl electron accepting bond. This is accompanied by a small increase of the C–Cl stretching frequency. Hence, the two investigated dimers can possibly be classified as the blue-shifting halogen–halogen contacts.  相似文献   
994.
The surface free energy of a monolithic silica xerogel treated at 1000°C has been measured by inverse gas chromatography in the temperature range 25–150°C using n-alkanes. Values of the dispersive component, S D, vary from 49.07 mJ·m–2 at 25°C to 17.20 mJ·m–2 at 150°C. The S D value obtained at 25°C is lower than that found for amorphous and crystalline silicas but higher than that found for glass fibres meaning that the heat treatment at 1000°C changes drastically the structure of the silica xerogel showing a surface similar to a glass. However, the higher value of S D in comparison to glass fibres can be attributed to the mesoporous structure present in the silica xerogel. In the temperature range of 60–90°C there exists an abrupt change of the S D values as well as in the dispersive component of the surface enthalpy, h S D. Such abrupt change can be attributed to an entropic contribution of the surface free energy.  相似文献   
995.
有机硅化合物是半导体工业中产生硅元件的基本原料和有机合成中的重要试剂,是多年来大家研究较多的分子体系之一.本文报导了用同步辐射加速器产生的真空紫外光,电离St(CH3hCI。分子.在50-120n-m波长范围内,测量了各种离子产物与真空紫外光波长的关系,推算得它的绝热电离电势和离子中几个化学键的键能.1实验装置和方法本工作在国家同步辐射实验室光化学实验站进行.进行分子真空紫外光电离研究的实验系统已在文献山中详细描述.同步辐射加速器产生的真空紫外光波长用Ne气的电离势标定,其误差<士0-Inln.单色仪的分辨率为河凸…  相似文献   
996.
The sidechain conformational potential energy hypersurfaces (PEHS) for the γL, βL, αL, and αD backbone conformations of N-acetyl- -aspartate-N′-methylamide were generated. Of the 81 possible conformers initially expected for the aspartate residue, only seven were found after geometric optimizations at the B3LYP/6-31G(d) level of theory. No stable conformers could be located in the δL, L, γD, δD, and D backbone conformations. The ‘adiabatic’ deprotonation energies for the endo and exo forms of N-acetyl- -aspartic acid-N′-methylamide were calculated by comparing their optimized relative energies against those found for the seven stable conformers of N-acetyl- -aspartate-N′-methylamide. Sidechain conformational PEHSs were also generated for the estimation of ‘vertical’ deprotonation energies for both endo and exo forms of N-acetyl- -aspartic acid-N′-methylamide. All backbone–sidechain (N–HO–C) and backbone–backbone (N–HO=C) hydrogen bond interactions were analyzed. A total of two backbone–backbone and four backbone–sidechain interactions were found for N-acetyl- -aspartate-N′-methylamide. The deprotonated sidechain of N-acetyl- -aspartate-N′-methylamide may allow the aspartyl residue to form strong hydrogen bond interactions (since it is negatively charged) which may be significant in such processes as protein–ligand recognition and ligand binding. As a primary example, the molecular geometry of the aspartyl residue may be important in peptide folding, such as that in the RGD tripeptide.  相似文献   
997.
Two series of phosphorus‐containing aromatic poly(ester amide)s with inherent viscosities of 0.46–3.20 dL/g were prepared by low‐temperature solution polycondensation from 1,4‐bis(3‐aminobenzoyloxy)‐2‐(6‐oxido‐6H‐dibenz〈c,e〉〈1,2〉oxaphosphorin‐6‐yl)naphthalene and 1,4‐bis(4‐aminobenzoyloxy)‐2‐(6‐oxido‐6H‐dibenz〈c,e〉〈1,2〉oxaphosphorin‐6‐yl)naphthalene with various aromatic diacid chlorides. All the poly(ester amide)s were amorphous and readily soluble in many organic solvents, such as N,N‐dimethylformamide, N,N‐dimethylacetamide (DMAc), and N‐methyl‐2‐pyrrolidone (NMP). Transparent, tough, and flexible films of these polymers were cast from DMAc and NMP solutions. Their casting films had tensile strengths of 71–214 MPa, elongations to break of 5–10%, and initial moduli of 2.3–6.0 GPa. These poly(ester amide)s had glass‐transition temperatures of 209–239 °C (m‐series) and 222–267 °C (p‐series). The degradation temperatures at 10% weight loss in nitrogen for these polymers ranged from 462 to 489 °C, and the char yields at 800 °C were 55–63%. Most of the poly(ester amide)s also showed a high char yield of 35–45%, even at 800 °C under a flow of air. The limited oxygen indices of these poly(ester amide)s were 35–46. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 459–470, 2002; DOI 10.1002/pola.10129  相似文献   
998.
Oligophenylenevinylene (OPV)‐terminated phenylenevinylene dendrons G1 – G4 with one, two, four, and eight “side‐arms”, respectively, were prepared and attached to C60 by a 1,3‐dipolar cycloaddition of azomethine ylides generated in situ from dendritic aldehydes and N‐methylglycine. The relative electronic absorption of the OPV moiety increases progressively along the fullerodendrimer family C60G1 – C60G4 , reaching a 99:1 ratio for C60G4 (antenna effect). UV/Vis and near‐IR luminescence and transient absorption spectroscopy was used to elucidate photoinduced energy and electron transfer in C60G1 – C60G4 as a function of OPV moiety size and solvent polarity (toluene, dichloromethane, benzonitrile), taking into account the fact that the free‐energy change for electron transfer is the same along the series owing to the invariability of the donor–acceptor couple. Regardless of solvent, all the fullerodendrimers exhibit ultrafast OPV→C60 singlet energy transfer. In CH2Cl2, the OPV→C60 electron transfer from the lowest fullerene singlet level (1C60*) is slightly exergonic (ΔGCS≈0.07 eV), but is observed, to an increasing extent, only in the largest systems C60G2 – C60G4 with lower activation barriers for electron transfer. This effect has been related to a decrease of the reorganization energy upon enlargement of the molecular architecture. Structural factors are also at the origin of an unprecedented OPV→C60 electron transfer observed for C60G3 and C60G4 in apolar toluene, whereas in benzonitrile, electron transfer occurs in all cases. Monitoring of the lowest fullerene triplet state by sensitized singlet oxygen luminescence and transient absorption spectroscopy shows that this level is populated through intersystem crossing and is not involved in photoinduced electron transfer.  相似文献   
999.
Potential energy surfaces for rotations around two central CN bonds in N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (AAF–dG) and its deacetylated derivative (AF–dG) were studied using Amber 95 molecular mechanics. Both of these adducts are known to be strong mutagens and carcinogens. New Amber 95 force field parameters were derived for the linkage connecting guanine and fluorene moieties in AAF–dG and AF–dG. For this purpose, we determined ab initio MP2/cc-pVDZ//B3-LYP/6-31G* and polarized continuum model Hartree–Fock/6-31G* potential energy surfaces of smaller model systems that included the N-methylimidazole–acetylaniline and N-methylimidazole–aniline adducts. The molecular mechanics parameters were adjusted to minimize differences between the gas-phase ab initio and molecular mechanics surfaces of these model systems. The resulting parameters were transferred to AF–dG and AAF–dG. The barrier for the rotation of the fluorene residue in AF–dG was found to be less than 2 kcal/mol. Such a small barrier renders the fluorene moiety freely rotatable at room temperature. In contrast, the fluorene rotation in AAF–dG is hindered by a significantly larger barrier of 10 kcal/mol. This barrier corresponds to conformations in which the fluorene and acetyl groups lie in the same plane, and is largely due to steric repulsion. Similarly, the coplanar arrangement of guanine and the bridging amino or acetyl groups is disfavored by 5–10 kcal/mol, with AAF–dG again being the more rigid of the two molecules. Energy minima for a rotation around a bond between guanine and the bridging nitrogen are found at ±80° in AAF–dG, and at 120° and –90° for AF–dG. Overall, the fluorene–dG linkages in AF–dG and AAF–dG adducts have significantly different equilibrium structures and torsional flexibilities. These differences may be contributing factors for the observed disparity in mutagenic effects of these adducts.Electronic Supplementary Material: Supplementary material is available in the online version of this article at Acknowledgements. This work was supported by the NSF REU grant no. CHE-0243825 to Loyola University Chicago. We thank to Tom Ellenberger and Shuchismita Dutta for providing us with their results prior to publication.  相似文献   
1000.
Interatomic distances in the reaction centers of the addition reactions of (i) H· to the C=C, C=O, N≡C, and C≡C bonds, (ii) ·CH3 radical to the C=C, C=O, and C≡C bonds, and (iii) alkyl, aminyl, and alkoxyl radicals to olefin C=C bonds were determined using a new semiempirical method for calculating transition-state geometries of radical reactions. For all reactions of the type X· + Y=Z → X— Y—Z· the r # X...Y distance in the transition state is a linear function of the enthalpy of reaction. Parameters of this dependence were determined for seventeen classes of radical addition reactions. The bond elongation, Δr # X...Y, in the transition state decreases as the triplet repulsion, electronegativity difference between the atoms X and Y in the reaction center, and the force constant of the attacked multiple bond increase. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 894–902, April, 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号