全文获取类型
收费全文 | 91篇 |
免费 | 5篇 |
国内免费 | 1篇 |
专业分类
化学 | 16篇 |
力学 | 5篇 |
数学 | 4篇 |
物理学 | 72篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2021年 | 2篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 10篇 |
2015年 | 4篇 |
2014年 | 13篇 |
2013年 | 22篇 |
2012年 | 5篇 |
2011年 | 3篇 |
2010年 | 4篇 |
2009年 | 3篇 |
2008年 | 2篇 |
2007年 | 2篇 |
2006年 | 1篇 |
2005年 | 1篇 |
2004年 | 5篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 5篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1993年 | 2篇 |
排序方式: 共有97条查询结果,搜索用时 15 毫秒
71.
测量了α-Al2O3: Mn单晶中子辐照前后的三维热释发光谱.观察到α-Al2O3: Mn:Mn单晶γ射线照射后测量的三维热释发光谱中,峰温在350℃波长为680nm处有一宽发光峰,这可能与Mn2+离子有关;波长为695nm峰温在170℃和350℃的线状光谱,叠加在680nm宽发光峰上,是Cr3+离子的发光谱线,其中可能有Mn4+离子的贡献.与纯α-Al2O3单晶的热释发光谱相比,掺入Mn杂质后,γ射线照射的三维热释发光谱中完全地抑制了波长为416nm的α-Al2O3的F心发光峰.经1017cm-2中子注量辐照和退火后,γ射线照射后测量的三维热释发光谱中,在150℃出现了波长为416和695nm的发光峰,以及在250℃波长为680和695nm的发光峰,其中695nm新发光峰的强度略超过了中子辐照前α-Al2O3:Mn在350℃波长为695nm的发光峰,说明中子辐照产生了大量浅陷阱能级和F心.然而,经1018cm-2中子注量辐照和退火后,γ射线照射后测量的三维热释发光谱中,出现了峰温150℃,190℃和250℃波长为520nm的Mn2+离子发光峰,以及300℃波长为680和695nm的Cr3+(或Mn4+)的发光峰,表明增高中子注量的辐照,产生了温度为190℃,250℃和300℃深陷阱能级和F心,并使Mn2+离子发光峰明显加强.关键词:α-Al2O3:Mn三维发光谱缺陷结构发光机理 相似文献
72.
基于氯化镁饱和溶液反应体系中,对采用固定化脂肪酶Lipozyme TL IM催化光皮树油脂转化为生物柴油的工艺进行了研究。考察了固定化脂肪酶Lipozyme TL IM催化光皮树油转酯化的工艺中甲醇的用量、固定化脂肪酶的添加量、摇床的转速和反应时间对生物柴油产率的影响。实验结果表明,采用氯化镁饱和溶液反应体系,在醇油摩尔比为3∶1,固定化酶Lipozyme TL IM用量为光皮树油质量的20%,摇床转速为150 r/min,反应8 h时,生物柴油产率最高,达到86.5%。与传统的三步甲醇醇解或者有机溶剂反应体系比较,采用的氯化镁饱和溶液体系的酶稳定性更好,反应效率更高,有效地解决了酶在甲醇中失活的问题,生产成本低,可成为生产生物柴油的新工艺。 相似文献
73.
A set of approximation expressions relating the lightning channel-base current and the lightning electric and magnetic fields on earth surface are proposed respectively in the near-zone and far-zone, by employing the transmission line (TL) model. The derived expressions show that, the electric and magnetic fields waveforms can be expressed approximately by the channel-base current waveform with different factors at a certain distances, whether in the near-zone or far-zone. The factors can be expressed in terms of the return stroke wavefront speed v, the speed of light c, and the horizontal distance r between the return-stroke channel and the observation point. 相似文献
74.
The important photoluminescence enhancement found in Carbon Dots (CDs) obtained from carbonaceous nanomaterials when passivating with acetone is shown in this paper, in which this type of passivation has not been reported previously. Analytical fluorescent assays were performed with the selected CDs using two different pollutants as target analytes. The results show that the optimal conditions for detecting 2,4-dinitrophenol (DNP) were at pH 3.5 while in case of 2-amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx) were found at physiological pH. The fascinating ability of CDs to interact with certain molecules under certain conditions gave rise to explore some useful applications for a quick detection of contaminants by simply monitoring the photoluminescence of CDs as shown in this article. 相似文献
75.
Recent developments in ß-delayed neutron (DN) spectroscopy are reviewed, and the importance of DN energy spectra for various problems in reactor physics, nuclear physics and astrophysics is discussed. 相似文献
76.
Berberine (BBR), a plant alkaloid, is known for its therapeutic properties of anticancer, cardioprotective, antidiabetic, hypolipidemic, neuroprotective, and hepatoprotective activities. The present study was to determine the molecular mechanism of BBR’s pharmacological activity in human monocytic (THP-1) cells induced by arachidonic acid (AA) or lipopolysaccharide (LPS). The effect of BBR on AA/LPS activated proinflammatory markers including TNF-α, MCP-1, IL-8 and COX-2 was measured by ELISA or quantitative real-time PCR. Furthermore, the effect of BBR on LPS-induced NF-κB translocation was determined by immunoblotting and confocal microscopy. AA/ LPS-induced TNF-α, MCP-1, IL-6, IL-8, and COX-2 markers were markedly attenuated by BBR treatment in THP-1 cells by inhibiting NF-κB translocation into the nucleus. Molecular modeling studies suggested the direct interaction of BBR to IKKα at its ligand binding site, which led to the inhibition of the LPS-induced NF-κB translocation to the nucleus. Thus, the present study demonstrated the anti-inflammatory potential of BBR via NF-κB in activated monocytes, whose interplay is key in health and in the pathophysiology of atherosclerotic development in blood vessel walls. The present study findings suggest that BBR has the potential for treating various chronic inflammatory disorders. 相似文献
77.
78.
This paper reviews recent research on the application of the physical dosimetry techniques of electron paramagnetic resonance (EPR) and luminescence (optically stimulated luminescence, OSL, and thermoluminescence, TL) to determine radiation dose following catastrophic, large-scale radiological events. Such data are used in dose reconstruction to obtain estimates of dose due to the exposure to external sources of radiation, primarily gamma radiation, by individual members of the public and by populations. The EPR and luminescence techniques have been applied to a wide range of radiological studies, including nuclear bomb detonation (e.g., Hiroshima and Nagasaki), nuclear power plant accidents (e.g., Chernobyl), radioactive pollution (e.g., Mayak plutonium facility), and in the future could include terrorist events involving the dispersal of radioactive materials. In this review we examine the application of these techniques in ‘emergency’ and ‘retrospective’ modes of operation that are conducted on two distinct timescales. For emergency dosimetry immediate action to evaluate dose to individuals following radiation exposure is required to assess deterministic biological effects and to enable rapid medical triage. Retrospective dosimetry, on the other hand, contributes to the reconstruction of doses to populations and individuals following external exposure, and contributes to the long-term study of stochastic processes and the consequential epidemiological effects. Although internal exposure, via ingestion of radionuclides for example, can be a potentially significant contributor to dose, this review is confined to those dose components arising from exposure to external radiation, which in most studies is gamma radiation.The nascent emergency dosimetry measurement techniques aim to perform direct dose evaluations for individuals who, as members of the public, are most unlikely to be carrying a dosimeter issued for radiation monitoring purposes in the event of a radiation incident. Hence attention has focused on biological or physical materials they may have in their possession that could be used as surrogate dosimeters. For EPR measurements, in particular, this includes material within the body (such as bone or tooth biopsy) requiring invasive procedures, but also materials collected non-invasively (such as clippings taken from finger- or toenails) and artefacts within their personal belongings (such as electronic devices of which smart phones are the most common). For luminescence measurements, attention has also focused on components within electronic devices, including smartphones, and a wide range of other personal belongings such as paper and other polymer-based materials (including currency, clothing, bank cards, etc.). The paper reviews progress made using both EPR and luminescence techniques, along with their current limitations.For the longer-established approach of retrospective dosimetry, luminescence has been the most extensively applied method and, by employing minerals found in construction materials, it consequently is employed in dosimetry using structures within the environment. Recent developments in its application to large-scale radiation releases are discussed, including the atomic bomb detonations at Hiroshima and Nagasaki, fallout from the Chernobyl reactor and atmospheric nuclear bomb tests within the Semipalatinsk Nuclear Test Site and fluvially transported pollution within the Techa River basin due to releases from the Mayak facility. The developments made in applying OSL and TL techniques are discussed in the context of these applications. EPR measurements with teeth have also provided benchmark values to test the dosimetry models used for Chernobyl liquidators (clean-up workers), residents of Semipalatinsk Nuclear Tests Sites and inhabitants of the Techa River basin.For both emergency and retrospective dosimetry applications, computational techniques employing radiation transport simulations based on Monte Carlo code form an essential component in the application of dose determinations by EPR and OSL to dose reconstruction problems. We include in the review examples where the translation from the physical quantity of cumulative dose determined in the sampled medium to a dose quantity that can be applied in the reconstruction of dose to individuals and/or populations; these take into account the source terms, release patterns and the movements of people in the affected areas. One role for retrospective luminescence dosimetry has been to provide benchmark dose determinations for testing the models employed in dose reconstruction for exposed populations, notably at Hiroshima and Nagasaki. The discussion is framed within the context of the well-known radiation incidents mentioned above. 相似文献
79.
在脂肪酶Lipozyme TL IM的催化下,2,2,5-三甲基-1,3-二氧六环-5-羧酸酐对抗生素西罗莫司的42-位羟基进行区域选择性酯化制得化合物4;4水解后合成了西罗莫司脂化物Temsirolimus,总产率83.7%。其结构经1H NMR和HR-MS确证。 相似文献
80.
Zinc selenide doped with Sn and (Sn, Dy) phosphors has been prepared by firing the samples in an atmosphere of nitrogen gas. The voltage and frequency dependence of electrolyte brightness has been studied. Voltage dependence of electroluminescence (EL) brightness reveals an acceleration collision mechanism in the Schottky barrier at the metal–semiconductor interfaces. EL and photoluminescence (PL) spectra and thermoluminescence (TL) glow curves of these phosphors have also been recorded to understand the nature and mechanism involved in the luminescence process. The trapping parameters are calculated for the glow curves of these phosphors. 相似文献