首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   3篇
化学   20篇
力学   1篇
数学   3篇
物理学   2篇
  2023年   6篇
  2022年   1篇
  2021年   3篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2004年   2篇
排序方式: 共有26条查询结果,搜索用时 125 毫秒
21.
Two-dimensional graphitic metal–organic frameworks (GMOF) often display impressive electrical conductivity chiefly due to efficient through-bond in-plane charge transport, however, less efficient out-of-plane conduction across the stacked layers creates large disparity between two orthogonal conduction pathways and dampens their bulk conductivity. To address this issue and engineer higher bulk conductivity in 2D GMOFs, we have constructed via an elegant bottom-up method the first π-intercalated GMOF (iGMOF1) featuring built-in alternate π-donor/acceptor (π-D/A) stacks of CuII-coordinated electron-rich hexaaminotriphenylene (HATP) ligands and non-coordinatively intercalated π-acidic hexacyano-triphenylene (HCTP) molecules, which facilitated out-of-plane charge transport while the hexagonal Cu3(HATP)2 scaffold maintained in-plane conduction. As a result, iGMOF1 attained an order of magnitude higher bulk electrical conductivity and much smaller activation energy than Cu3(HATP)2 (σ=25 vs. 2 S m−1, Ea=36 vs. 65 meV), demostrating that simultaneous in-plane (through-bond) and out-of-plane (through πD/A stacks) charge transport can generate higher electrical conductivity in novel iGMOFs.  相似文献   
22.
Banks and other financial institutions try to compute the necessary amount of total capital that they need for absorbing stochastically dependent losses from different risk types (e.g., credit risk and market risk). Two sophisticated procedures of this so-called integrated risk management are the top-down and the bottom-up approaches. When banks apply a more sophisticated risk integration approach at all, it is usually the top-down approach where copula functions are employed for linking the marginal distributions of profit and losses resulting from different risk types. However, it is not clear at all how accurate this approach is. Assuming that the bottom-up approach corresponds to the real-word data-generating process and using a comprehensive simulation study, it is shown that the top-down approach can underestimate the necessary amount of total capital for lower credit qualities. Furthermore, the direction and strength of the stochastic dependence between the risk types, the copula function employed, and the loss definitions all have an impact on the performance of the top-down approach. In addition, a goodness-of-fit test shows that, based on time series of loss data with realistic length, it is rather difficult to decide which copula function is the right one.  相似文献   
23.
The current development and future prospects of nanotechnology are discussed with special emphasis on the pros and cons of the “bottom-up” and “top-down” approaches to nanotechnology, and the eventual merging of the two, at the scale of about 30 nm in feature size, to form a new “hybrid” technology. At the scale of about 3 nm in feature size, this “hybrid” technology will be challenged by the emerging “supramolecular” and “molecular” technologies epitomized by large-scale integration of single-molecule devices. Ultimately the “supramolecular” and “molecular” technologies will yield to “atomic” or “nuclear” technologies at the dimension of below 0.3 nm whereby single-atom, single-electron, single-spin, single-photon devices become realities.  相似文献   
24.
For bottom-up MS, the digestion step is critical and is typically performed with trypsin. Solvent-assisted digestion in 80% acetonitrile has previously been shown to improve protein sequence coverage at shorter digestion times. This has been attributed to enhanced enzyme digestion efficiency in this solvent. However, our results demonstrate that tryptic digestion in 80% acetonitrile is less efficient than that of conventional (aqueous) digestion. This is a consequence of decreased enzyme activity beyond ∼40% acetonitrile, increased enzyme autolysis and lower protein solubility in 80% acetonitrile. We observe multiple missed cleavages and reduced concentration of fully cleaved digestion products. Nonetheless we confirm, through room temperature solvent-assisted digestion, a consistent improvement in protein sequence coverage when analyzed by mass spectrometry. These results are explained through the increased number of unique digestion products available for detection. Thus, while solvent-assisted digestion has clear merits for proteome analysis, one should be aware of the inefficiency of protein digestion though this protocol, particularly with absolute protein quantitation experiments.  相似文献   
25.
The bottom-up preparation of two-dimensional material micro-nano structures at scale facilitates the realisation of integrated applications in optoelectronic devices. Fibrous Phosphorus (FP), an allotrope of black phosphorus (BP), is one of the most promising candidate materials in the field of optoelectronics with its unique crystal structure and properties.[1] However, to date, there are no bottom-up micro-nano structure preparation methods for crystalline phosphorus allotropes.[1c, 2] Herein, we present the bottom-up preparation of fibrous phosphorus micropillar (FP-MP) arrays via a low-pressure gas-phase transport (LP-CVT) method that controls the directional phase transition from amorphous red phosphorus (ARP) to FP. In addition, self-powered photodetectors (PD) of FP-MP arrays with pyro-phototronic effects achieved detection beyond the band gap limit. Our results provide a new approach for bottom-up preparation of other crystalline allotropes of phosphorus.  相似文献   
26.
The oriented pore structure of wood endows it with a variety of outstanding properties, among which the low thermal conductivity has attracted researchers to develop wood-like aerogels as excellent thermal insulation materials. However, the increasing demands of environmental protection have put forward new and strict requirements for the sustainability of aerogels. Here, we report an all-natural wood-inspired aerogel consisting of all-natural ingredients and develop a method to activate the surface-inert wood particles to construct the aerogel. The obtained wood-inspired aerogel has channel structure similar to that of natural wood, endowing it with superior thermal insulation properties to most existing commercial sponges. In addition, remarkable fire retardancy and complete biodegradability are integrated. With the above outstanding performances, this sustainable wood-inspired aerogel will be an ideal substitute for the existing commercial thermal insulation materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号