首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32859篇
  免费   4219篇
  国内免费   2224篇
化学   2031篇
晶体学   23篇
力学   3792篇
综合类   454篇
数学   22962篇
物理学   10040篇
  2024年   68篇
  2023年   315篇
  2022年   368篇
  2021年   512篇
  2020年   968篇
  2019年   940篇
  2018年   903篇
  2017年   864篇
  2016年   1009篇
  2015年   787篇
  2014年   1441篇
  2013年   2808篇
  2012年   1594篇
  2011年   1991篇
  2010年   1931篇
  2009年   2087篇
  2008年   2228篇
  2007年   2173篇
  2006年   1895篇
  2005年   1864篇
  2004年   1574篇
  2003年   1471篇
  2002年   1339篇
  2001年   1028篇
  2000年   995篇
  1999年   910篇
  1998年   843篇
  1997年   714篇
  1996年   538篇
  1995年   489篇
  1994年   387篇
  1993年   276篇
  1992年   251篇
  1991年   239篇
  1990年   223篇
  1989年   130篇
  1988年   124篇
  1987年   120篇
  1986年   121篇
  1985年   109篇
  1984年   102篇
  1983年   54篇
  1982年   98篇
  1981年   81篇
  1980年   57篇
  1979年   65篇
  1978年   49篇
  1977年   42篇
  1976年   27篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Paolo Amore 《Annals of Physics》2010,325(12):2679-427
We obtain systematic approximations for the modes of vibration of a string of variable density, which is held fixed at its ends. These approximations are obtained iteratively applying three theorems which are proved in the paper and which hold regardless of the inhomogeneity of the string. Working on specific examples we obtain very accurate approximations which are compared both with the results of WKB method and with the numerical results obtained with a collocation approach. Finally, we show that the asymptotic behaviour of the energies of the string obtained with perturbation theory, worked to second order in the inhomogeneities, agrees with that obtained with the WKB method and implies a different functional dependence on the density that in two and higher dimensions.  相似文献   
972.
In the present work, we propose a new set of coherent structures that arise in nonlinear dynamical lattices with more than one component, namely interlaced solitons. In the anti-continuum limit of uncoupled sites, these are waveforms whose one component has support where the other component does not. We illustrate systematically how one can combine dynamically stable unary patterns to create stable ones for the binary case of two-components. For the one-dimensional setting, we provide a detailed theoretical analysis of the existence and stability of these waveforms, while in higher dimensions, where such analytical computations are far more involved, we resort to corresponding numerical computations. Lastly, we perform direct numerical simulations to showcase how these structures break up, when they are exponentially or oscillatorily unstable, to structures with a smaller number of participating sites.  相似文献   
973.
We reformulate the Gauss’ law of error in presence of correlations which are taken into account by means of a deformed product arising in the framework of the Sharma-Taneja-Mittal measure. Having reviewed the main proprieties of the generalized product and its related algebra, we derive, according to the Maximum Likelihood Principle, a family of error distributions with an asymptotic power-law behavior.   相似文献   
974.
In this paper we construct a particularly important solution to the focusing NLS equation, namely a Peregrine breather of the rank 10 which we call, P10P10 breather. The related explicit formula is given by the ratio of two polynomials of degree 110 with integer coefficients times trivial exponential factor. This formula drastically simplifies for the “initial values” namely for t=0t=0 or x=0x=0. This formula confirms a general conjecture saying that between all quasi-rational solutions of the rank NN fixed by the condition that its absolute value tends to 1 at infinity and its highest maximum is located at the point (x=0,t=0)(x=0,t=0), the PNPN breather is distinguished by the fact that PN(0,0)=2N+1PN(0,0)=2N+1 and, in the aforementioned class of quasi-rational solutions, it is an absolute maximum. At the end we also make a few remarks concerning the rational deformations of P10P10 breather involving 2N−22N2 free real parameters chosen in a way that PNPN breather itself corresponds to the zero values of these parameters although we have no intention to discuss the properties of these deformations here.  相似文献   
975.
976.
We consider a nonlinear Schrödinger equation with power nonlinearity, either on a compact manifold without boundary, or on the whole space in the presence of harmonic confinement, in space dimension one and two. Up to introducing an extra superlinear damping to prevent finite time blow up, we show that the presence of a sublinear damping always leads to finite time extinction of the solution in 1D, and that the same phenomenon is present in the case of small mass initial data in 2D.  相似文献   
977.
The Allen-Cahn equation ? Δu = u ? u 3 in ?2 has family of trivial singly periodic solutions that come from the one dimensional periodic solutions of the problem ?u″ =u ? u 3. In this paper we construct a non-trivial family of singly periodic solutions to the Allen-Cahn equation. Our construction relies on the connection between this equation and the infinite Toda lattice. We show that for each one-soliton solution to the infinite Toda lattice we can find a singly periodic solution to the Allen-Cahn equation, such that its level set is close to the scaled one-soliton. The solutions we construct are analogues of the family of Riemann minimal surfaces in ?3.  相似文献   
978.
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.  相似文献   
979.
In this paper, we investigate a generalized nonautonomous nonlinear equation which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. By virtue of the generalized Darboux transformation, the first- and second-order rogue-wave solutions for the generalized nonautonomous nonlinear equation are obtained, under some variable–coefficient constraints. Properties of the first- and second-order rogue waves are graphically presented and analyzed: When the coefficients are all chosen as the constants, we can observe the some functions, the shapes of wave crests and troughs for the first- and second-order rogue waves change. Oscillating behaviors of the first- and second-order rogue waves are observed when the coefficients are the trigonometric functions.  相似文献   
980.
The lowest-energy state of a macroscopic system in which symmetry is spontaneously broken, is a very stable wavepacket centered around a spontaneously chosen, classical direction in symmetry space. However, for a Heisenberg ferromagnet the quantum groundstate is exactly the classical groundstate, there are no quantum fluctuations. This coincides with seven exceptional properties of the ferromagnet, including spontaneous time-reversal symmetry breaking, a reduced number of Nambu–Goldstone modes and the absence of a thin spectrum (Anderson tower of states). Recent discoveries of other non-relativistic systems with fewer Nambu–Goldstone modes suggest these specialties apply there as well. I establish precise criteria for the absence of quantum fluctuations and all the other features. In particular, it is not sufficient that the order parameter operator commutes with the Hamiltonian. It leads to a measurably larger coherence time of superpositions in small but macroscopic systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号