首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14464篇
  免费   1213篇
  国内免费   471篇
化学   2801篇
晶体学   67篇
力学   6695篇
综合类   86篇
数学   2521篇
物理学   3978篇
  2024年   18篇
  2023年   144篇
  2022年   251篇
  2021年   294篇
  2020年   382篇
  2019年   292篇
  2018年   334篇
  2017年   363篇
  2016年   392篇
  2015年   434篇
  2014年   562篇
  2013年   1027篇
  2012年   714篇
  2011年   915篇
  2010年   636篇
  2009年   827篇
  2008年   799篇
  2007年   810篇
  2006年   716篇
  2005年   613篇
  2004年   653篇
  2003年   549篇
  2002年   489篇
  2001年   377篇
  2000年   378篇
  1999年   328篇
  1998年   332篇
  1997年   319篇
  1996年   301篇
  1995年   258篇
  1994年   235篇
  1993年   213篇
  1992年   209篇
  1991年   156篇
  1990年   140篇
  1989年   113篇
  1988年   104篇
  1987年   68篇
  1986年   70篇
  1985年   78篇
  1984年   69篇
  1983年   39篇
  1982年   76篇
  1981年   22篇
  1980年   12篇
  1979年   6篇
  1978年   7篇
  1976年   5篇
  1971年   6篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
Abstract

A field site equipped with suction cup lysimeters was installed at Treviglio (BG) to assess the migration capacity of the herbicides linuron and monolinuron from topsoil to groundwater and to verify the appearance of their relevant transformation products in soil and water samples. A constant hydraulic head was applied in order to develop water saturation conditions in the upper layers. KCl was used as a tracer to evaluate water infiltration velocity through the vertical soil profile. The constant hydraulic head accelerated infiltration rates, while herbicide concentrations reached maximum contamination because soil adsorption capacity was underdeveloped. The results indicated two main processes of pesticide transport: firstly transport due mainly to water infiltration through macropores; secondly the transport driven by matrix flow. Linuron was found to be the most mobile herbicide, while chloroanilines were found to be the major transformation products of the herbicides considered.  相似文献   
42.
Living fluids     
《Comptes Rendus Physique》2013,14(6):447-450
One of the major emerging fields of research of the beginning of this century concerns living fluids. By “living fluids”, we mean two major categories of complex fluids: (i) fluids which are essential to life, like blood, and (ii) active fluids made of particles that are able to propel themselves in the suspending fluid by converting a form of their energy into mechanical motion. Studies on active fluids have known a considerable interest since the last decade. Blood might be viewed as an old topic, but the progresses in experimental techniques, analytical concepts and numerics, have contributed nowadays to a dramatic renewal of the interest in this field, with a great potential towards understanding physical and mechanical factors in cardiovascular diseases. These fields have considerably strengthened interdisciplinary research. The series of reviews of this dossier focus on the tremendous recent progress achieved in research on living fluids both from the experimental and theoretical points of views. These reviews present also the major open issues, making of this dossier a unique guide for future research in these fields. This project grew up thanks to the international summer school that we organized on the topic “living fluids” at the IES (Institut dʼétudes scientifiques) of Cargèse (Corsica) in 2012.  相似文献   
43.
《Analytical letters》2012,45(10):867-889
Abstract

The split-flow system is comprised of two identical micro-columns, one of which contains an immobilized enzyme preparation, the other an inert support material.

The heat produced in each column on introduction of a sample is measured with thermistors placed in these columns. The use of a reference column virtually eliminates the influence on the measurements of artifactual signals as unspecific heat, i.e., heat not produced by the enzymic reaction. The performance of the split-flow enzyme thermistor at a variety of pH's, ionic strengths or viscosities associated with the sample has been investigated and compared with previously described alternative enzyme thermistor arrangements. In this comparative study glucose at a concentration of 5 · 10?4 M was used throughout. On passage through the imnobilized glucose oxidase preparation this solution gave rise to a heat change At of about 0.01°C. The insensitivity of the system described herein towards such variations makes it particularly suitable for the analysis of metabolities present in crude solutions such as urine and skim-milk.  相似文献   
44.
Surface tension (γ) and viscosity (η) data of aqueous solutions of the deoxyadenosine (DOA) and the deoxyribose (DOR) sugars have been measured with the survismeter, a new instrument, along with tetrahydrofuran (THF), dimethylformamide (DMF), acetonitrile and dimethylsulphoxide (DMSO) solvents. The same properties have also been measured with a stalagmometer and a viscosimeter, respectively, which afford the same information, albeit at the expense of a larger amount of chemicals and solvents. We obtain comparatively better accuracy in both kinds of measurements than with conventional methods. Therefore, the survismeter lends itself as a simple and reliable instrument.  相似文献   
45.
We present numerical results for in‐line and cross‐flow vibrations of a circular cylinder, which is immersed in a uniform flow and is elastically supported by damper‐spring systems to compute vibrations of a rigid cylinder. In the case of a circular cylinder with a low Scruton number, it is well‐known that two types of self‐excited vibrations appear in the in‐line direction in the range of low reduced velocities. On the other hand, a cross‐flow vibration of the circular cylinder can be excited in the range of high reduced velocities. Therefore, we compute the flow‐induced vibrations of the circular cylinder in the wide range of the reduced velocities at low and high Scruton numbers and discuss about excitation mechanisms in the in‐line and cross‐flow directions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
46.
47.
We use the contact Yamabe flow to find solutions of the contact Yamabe problem on K-contact manifolds.  相似文献   
48.
Lattice QCD predicts a phase transition between hadronic matter and a system of deconfined quarks and gluons (the Quark Gluon Plasma) at high energy densities. Our current understanding of this new state of matter will be discussed with two key results from the Relativistic Heavy Ion Collider (RHIC).  相似文献   
49.
A simple stopped-flow injection system with spectrophotometric detection was proposed for the determination of nicotinamide (NAM) in pharmaceutical formulations. In this system cyanogen chloride formed from the combination of an acidic KSCN with the NaClO streams reacts with injected NAM to form glutaconic aldehyde. Then the product of these three components was coupled with another buffered (pH 3.5) stream of barbituric acid and directed towards the detector. A 45 s after sample injection the pump was stopped for 130 s. During this time the reactants in the flow cell were provided with the required temperature (40 °C) by placing the cell in a home made cell jacket to increase the yield of the polymethine dye product. Eventually, the absorbance of the formed pink color dye was monitored spectrophotometrically at 560 nm and NAM in the concentration range of 1.0–25.0 μg/mL (R = 0.9974 and D.L = 0.5 μg/mL) was determined. The results obtained by this method were compared statistically and agree with those obtained by the method described in the British Pharmacopoeia.  相似文献   
50.
The prediction of volume fractions in order to measure the multiphase flow rate is a very important issue and is the key parameter of multi-phase flow meters (MPFMs). Currently, the gamma ray attenuation technique is known as one of the most precise methods for obtaining volume fractions. The gamma ray attenuation technique is based on the mass attenuation coefficient, which is sensitive to density changes; density is sensitive in turn to temperature and pressure fluctuations. Therefore, MPFM efficiency depends strongly on environmental conditions. The conventional solution to this problem is the periodical recalibration of MPFMs, which is a demanding task. In this study, a method based on dual-modality densitometry and artificial intelligence (AI) is presented, which offers the advantage of the measurement of the oil–gas–water volume fractions independent of density changes. For this purpose, several experiments were carried out and used to validate simulated dual modality densitometry results. The reference density point was established at a temperature of 20 °C and pressure of 1 bar. To cover the full range of likely density fluctuations, four additional density sets were defined (at changes of ±4% and ±8% from the reference point). An annular regime with different percentages of oil, gas and water at different densities was simulated. Four features were extracted from the transmission and scattered detectors and were applied to the artificial neural network (ANN) as inputs. The input parameters included the 241Am full energy peak, 137Cs Compton edge, 137Cs full energy peak and total scattered count, and the outputs were the oil and air percentages. A multi-layer perceptron (MLP) neural network was used to predict the volume fraction independent of the oil and water density changes. The obtained results show that the proposed ANN model achieved good agreement with the real data, with an estimated root mean square error (RMSE) of less than 3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号