首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   912篇
  免费   19篇
  国内免费   56篇
化学   942篇
晶体学   1篇
力学   3篇
综合类   1篇
物理学   40篇
  2023年   16篇
  2022年   14篇
  2021年   25篇
  2020年   27篇
  2019年   28篇
  2018年   8篇
  2017年   23篇
  2016年   30篇
  2015年   24篇
  2014年   17篇
  2013年   30篇
  2012年   121篇
  2011年   65篇
  2010年   30篇
  2009年   88篇
  2008年   70篇
  2007年   70篇
  2006年   47篇
  2005年   46篇
  2004年   38篇
  2003年   37篇
  2002年   35篇
  2001年   10篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1997年   11篇
  1996年   4篇
  1995年   11篇
  1994年   12篇
  1993年   10篇
  1992年   10篇
  1991年   5篇
  1990年   9篇
  1989年   1篇
排序方式: 共有987条查询结果,搜索用时 31 毫秒
91.
During the 20th century, population growth and urbanization, together with changes in production and consumption, have placed unprecedented demands on the quality of water. The ongoing extraordinary economic growth, industrialization, and urbanization of many developing countries results in widespread water pollution from agricultural, industrial, and domestic sources. In consequence, people consume contaminated drinking water, thereby increasing the risk of exposure not only to infectious and parasitic disease but also to a growing volume of genotoxic and cytotoxic chemicals. In light of these trends, new, rapid and low-cost approaches are urgently needed to assess the quality of water supplies. Because of their simplicity and sensitivity, bacterial tests play an important role in the detection and screening of genotoxins or cytotoxins in water. Thus, the bacterial Lux-Fluoro test, which is a combination of two bioassays that simultaneously measure the genotoxicity (SOS-Lux test) and the cytotoxicity (LAC-Fluoro test), was used to identify polluted water from samples of rural and urban sources, collected from 10 different locations in the Punjab rivers’ basin. We identified at least three samples from rural origin having a high cytotoxic potential. The highest toxicity was found for the sample obtained from a draining canal collecting runoff water from the fields. The two other highly contaminated samples identified were taken from two ponds of different villages. The water samples obtained from the Ravi river and from the water tap in a suburb of the megacity Lahore showed no sign of genotoxicity or cytotoxicity. Seven control samples with differing genotoxic and cytotoxic potency were shown for comparison.  相似文献   
92.
A flow injection catechol biosensor based on tyrosinase entrapped in carbon nanotube modified polypyrrole biocomposite film on a glassy carbon surface has been developed. Amperometric response was measured as a function of concentration of catechol, at a fixed bias voltage of −50 mV at a flow rate of 1 mL/min. The proposed biosensor exhibited impressive analytical performance such as a linear range between 3 and 50 μM, a short response time (10 s), a detection limit of 0.671 μM and an excellent operational (with a relative standard deviation of 0.54%) and long-term stability (85% remained after 10th week). A comparison of the analytical parameters of the developed biosensor with polypyrrole/tyrosinase film electrode was performed in the study. CNT was shown to enhance the electron transfer between the electrode and enzyme and capable to carry higher bioactivity owing to its intensified surface area.  相似文献   
93.
A novel protocol for the synthesis of dye-encapsulating liposomes tagged with DNA oligonucleotides at their outer surface was developed. These liposomes were optimized for use as signal enhancement agents in lateral-flow sandwich-hybridization assays for the detection of single-stranded RNA and DNA sequences. Liposomes were synthesized using the reverse-phase evaporation method and tagged with oligonucleotides by adding cholesteryl-modified DNA probes to the initial lipid mixture. This resulted in a greatly simplified protocol that provided excellent control of the probe coverage on the liposomes and cut the preparation time from 16 hours to just 6 hours. Liposomes were prepared using probe concentrations ranging from 0.00077 to 0.152 mol% of the total lipid, several hydrophobic and polyethylene glycol-based spacers between the cholesteryl anchor and the probe, and liposome diameters ranging from 208 nm to 365 nm. The liposomes were characterized by dynamic light scattering, visible spectroscopy, and fluorescence spectroscopy. Their signal enhancement functionality was compared by using them in lateral-flow optical biosensors for the detection of single-stranded DNA sequences. In these assays, an optimal reporter probe concentration of 0.013 mol%, liposome diameter of 315 nm, and liposome optical density of 0.4–0.6 at 532 nm were found. The spacer length between the cholesteryl anchor and the probe showed no significant effect on the signals in the lateral-flow assays. The results presented here provide important data for the general use of liposomes as labels in analytical assays, with specific emphasis on nucleic acid detection via lateral flow assays.  相似文献   
94.
Dye-encapsulating unilamellar DNA oligonucleotide-tagged liposomes were prepared and characterized for use as signal-enhancing reagents in a microtiter plate sandwich-hybridization analyses of single-stranded RNA or DNA sequences. The liposomes were synthesized using the reversed-phase evaporation method and tagged with DNA oligonucleotides by adding cholesteryl-modified DNA reporter probes to the initial lipid mixture. Liposomes were prepared using probe coverages of 0.0013–0.103 mol% of the total lipid input, several hydrophobic and poly(ethylene glycol)-based spacers between the cholesteryl anchor and the probe, and liposome diameters ranging from 200 nm to 335 nm. Their signal enhancement functionality was compared by using them in microtiter plate sandwich-hybridization assays for the detection of single-stranded DNA sequences. In these assays, an optimal reporter probe concentration of 0.103 mol%, a liposome diameter of 274 nm, and a phospholipid concentration of 0.3 mM were found. The length between the cholesteryl anchor and the probe was optimal when a spacer composed of TEG+(CH2O)3 was used. Under optimal conditions, a detection limit of 0.5 nM for a truncated synthetic DNA sequence was found with a coefficient of variation of 4.4%. A 500-fold lower limit of detection using fluorescence was found using lysed dye-encapsulating liposomes versus a single fluorescein-labeled probe. Finally, when this method was applied to the detection of atxA RNA extracted from E.coli SG12036-pIu121 and amplified using NASBA, a minimum extracted concentration of RNA of 1.1×10−7 μg/μL was found.  相似文献   
95.
The biosensor was constructed for determination of glucose by using glucose oxidase enzyme immobilized on poly(thiophene-3-boronic acid) (PTBA). Boronic acid functionalized polythiophene layer was obtained by electrochemical polymerization of Thiophene (Th) and thiophene-3-boronic acid (TBA) with different monomer rations. The reconstitution of the apo-glucose oxidase (apo-GOx) on a complexed flavin adenine dinucleotide (FAD) linked to polythiophene boronic acid (PTBA) monolayer yields an electrically contacted enzyme monolayer. The GOx-reconstituted enzyme electrode exhibited excellent electrocatalytic activities toward the reduction and oxidation of hydrogen peroxide as well. The PTBA/FAD/GOx biosensor shows an excellent performance for glucose at +0.4 V with a high sensitivity (2.14 μA/mM) and lower response time (~5 s) in a wide concentration range of 0.5–18 mM (correlation coefficient of 0.9952). Furthermore, the effects of applied potential, pH, temperature, electroactive interference, stability and reusability of the biosensors were discussed.  相似文献   
96.
In this work, three types of electrodes suitable for amperometric glucose biosensors were designed. One type of electrode was based on bio‐selective layer of polypyrrole/(glucose oxidase)/(Prussian Blue) (Ppy/GOx/PB) and it was used as a control electrode regarding to which electrochemical properties of two other types of electrodes were compared. During the formation of Prussian blue layers graphite electrodes were additionally modified by Ni‐hexacyanoferrate (NiHCF) and by Co‐hexacyanoferrate (CoHCF) in order to design Ppy/GOx/PB‐NiHCF and Ppy/GOx/PB‐CoHCF electrodes, respectively. Some physicochemical characteristics of all three types of electrodes were evaluated and compared. The Ppy/GOx/PB‐NiHCF electrode showed wider linear range of the calibration curve than Ppy/GOx/PB and Ppy/GOx/PB‐CoHCF electrodes. The effect of temperature on analytical performance of the Ppy/GOx/PB‐NiHCF based biosensor has been evaluated and activation energy of enzyme catalysed reaction has been calculated within the temperature range of 15 °C to 30 °C.  相似文献   
97.
Hui Wang  Yuan Yin  Liu Gang 《Electroanalysis》2019,31(6):1174-1181
Lead is a highly toxic metal, which can persist in the natural environment and enrich in biological bodies. It can cause many severe diseases in the human body even at extremely low concentration. Here, we developed a new biosensor using single‐walled carbon nanotubes (SWNTs) modified with a specific Pbzyme (Pbzyme/SWNTs/FET) to detect lead ion (Pb2+), which can monitor the lead pollution. This biosensor used 3‐aminopropyltriethoxysilane to immobilize SWNTs on the area between the source and the drain of single‐gap microelectrode (FET), and the duplex DNA (Pbzyme) consisted of DNAzyme (GR‐5) and complementary DNA (CS‐DNA) was functionalized with the SWNTs’ surface through a peptide bond. The use of GR‐5 DANzyme and Pb2+ to form a stable complex structure to cleave the CS‐DNA can change radically the Pbzyme's structure on the SWNTs’ surface, which will further affect the number of carriers in SNWTs and the conductivity of the Pbzyme/SWNTs/FET. The change in conductivity can be used to evaluate the Pb2+ concentration. Under the optimal conditions, the relative resistances presented a positive correlation with the Pb2+ concentrations, showing a good linear relationship in the range of 10 pM to 50 nM, where the linear regression equation was y=10.104log [CPb]+5.8656, and the detection limit was 7.4 pM. Finally, the biosensor was applied to measure the Pb2+ contents in the soil collected from the forest grass green belt and paint, and the results were compared with the results of atomic fluorescence spectrometry.  相似文献   
98.
The development of a simple directly wearable approach for the rapid, specific and sensitive determination of biomarkers is of great importance to a variety of biomedical applications. Dental floss can provide a unique device platform for sensing of oral biomarkers. We show here for the first time the development of a smart dental floss for biosensing of glucose. The sensor was made by painting carbon graphite ink and Ag/AgCl ink on dental floss. Via the immobilization of glucose oxidase, we show the detection of glucose with a detection range of 0.048 mM to 19.5 mM and a response time of about 2 min. It is expected that our results could provide new exciting opportunities for the development of various flexible smart sensing devices in oral health applications.  相似文献   
99.
In this paper we report the desgin and synthesis of dihydroxyindoles oligomers based reversible fluorescence sensor.We find dihydroxyindoles-2-carboxylic acid derived oligmer(P-DHICA)has the highest selectivity and sensitivity for Cu^2+detection.This work provide a highly efficient,environmentally friendly biosensor for potential use in medical testing.  相似文献   
100.
In this study, we fabricated an effective and sensitive DNA biosensor based on flower-like Pt/NiCo2O4 modified carbon paste electrode (FL-Pt/NiCo2O4/CPE) for detection of pramipexole (PPX). Spectrophotometry, differential pulse voltammetry (DPV) and docking methods were employed to evaluate the interaction of DNA-PPX. Moreover, the DPV technique was chosen to monitor the electrochemical response of guanine on the DNA biosensor. The relationship between the concentration of PPX and the oxidation signal of guanine was linear in the range of 0.4 to 310.0 μM and a limit of detection (LOD) of 0.09 μM was calculated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号