首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   40篇
  国内免费   30篇
化学   194篇
晶体学   2篇
力学   4篇
数学   3篇
物理学   254篇
  2024年   1篇
  2023年   11篇
  2022年   25篇
  2021年   21篇
  2020年   30篇
  2019年   13篇
  2018年   16篇
  2017年   28篇
  2016年   27篇
  2015年   13篇
  2014年   32篇
  2013年   30篇
  2012年   19篇
  2011年   29篇
  2010年   21篇
  2009年   22篇
  2008年   21篇
  2007年   17篇
  2006年   18篇
  2005年   12篇
  2004年   8篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   6篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
排序方式: 共有457条查询结果,搜索用时 15 毫秒
71.
72.
Ferromagnetic iron oxide nanoparticles of about 33 nm in diameter were synthesized by high-temperature decomposition of an iron-oleate complex, using octadecene as the solvent. These particles were subsequently coated with polyN-isopropylacrylamide (pNIPAAm) by a surfactant exchange method. Temperature-sensitive behavior of these particles was studied using ac susceptibility and dynamic light scattering (DLS) measurements. Shifts in the imaginary part of the ac susceptibility are correlated with swelling and collapse of pNIPAAm as a function of temperature.  相似文献   
73.
Dental erosion and decay are increasingly prevalent but as yet there is no quantitative monitoring tool. Such a tool would allow earlier diagnosis and treatment and ultimately the prevention of more serious disease and pain. Despite ultrasound having been demonstrated as a method of probing the internal structures of teeth more than 40 years ago, development of a clinical tool has been slow. The aim of the study reported here was to investigate the use of a novel high frequency ultrasound transducer and validate it using a known dental technique.A tooth extracted for clinical reasons was sectioned to provide a sample that contained an enamel and dentine layer such that the enamel-dentine junction (EDJ) was of a varying depth. The sample was then submerged in water and a B-scan recorded using a custom-designed piezocomposite ultrasound transducer with a centre frequency of 35 MHz and a −6 dB bandwidth of 24 MHz.The transducer has an axial resolution of 180 μm and a spatial resolution of 110 μm, a significant advance on previous work using lower frequencies. The depth of the EDJ was measured from the resulting data set and compared to measurements from the sequential grinding and imaging (SGI) method.The B-scan showed that the EDJ was of varying depth. Subsequently, the EDJ measurements were found to have a correlation of 0.89 (p < 0.01) against the SGI measurements. The results indicate that high frequency ultrasound is capable of measuring enamel thickness to an accuracy of within 10% of the total enamel thickness, whereas currently there is no clinical tool available to measure enamel thickness.  相似文献   
74.
Better use of biomedical knowledge is an increasingly pressing concern for tackling challenging diseases and for generally improving the quality of healthcare. The quantity of biomedical knowledge is enormous and it is rapidly increasing. Furthermore, in many areas it is incomplete and inconsistent. The development of techniques for representing and reasoning with biomedical knowledge is therefore a timely and potentially valuable goal. In this paper, we focus on an important and common type of biomedical knowledge that has been obtained from clinical trials and studies. We aim for (1) a simple language for representing the results of clinical trials and studies; (2) transparent reasoning with that knowledge that is intuitive and understandable to users; and (3) simple computation mechanisms with this knowledge in order to facilitate the development of viable implementations. Our approach is to propose a logical language that is tailored to the needs of representing and reasoning with the results of clinical trials and studies. Using this logical language, we generate arguments and counterarguments for the relative merits of treatments. In this way, the incompleteness and inconsistency in the knowledge is analysed via argumentation. In addition to motivating and formalising the logical and argumentation aspects of the framework, we provide algorithms and computational complexity results.  相似文献   
75.
A series of tricyanovinyl (TCV)-substituted oligothiophenes was synthesized and investigated with a number of physical methods including UV/Vis, IR, and Raman spectroscopy, nonlinear optical (NLO) measurements, X-ray diffraction, and cyclic voltammetry. Mono- or disubstituted oligomers were prepared by the reaction of tetracyanoethylene with mono- or dilithiated oligomers. The comparative effects of the symmetric and asymmetric substitutions in the electronic and molecular properties have been addressed. These oligomers display dramatic reductions in both their optical and electrochemical band gaps in comparison with unsubstituted molecules. The analysis of the electronic properties of the molecules was assisted by density functional theory calculations, which are in excellent agreement with the experimental data. TCV substitution influences the energies of the frontier orbitals, especially with respect to the stabilization of LUMO orbitals. X-ray structural characterization of a monosubstituted oligomer exhibits pi-stacking with favorable intermolecular interactions. NLO results agree with the role of the intramolecular charge-transfer feature in the asymmetric samples. These results furthermore exalt the role of conformational flexibility in the disubstituted compounds and reveal an unexpected nonlinear optical activity for symmetric molecules. Regarding the electronic structure, the interpretation of the vibrational data reflects the balanced interplay between aromatic and quinoid forms, finely tuned by the chain length and substitution pattern. The electronic and structural properties are consistent with the semiconducting properties exhibited by these materials in thin film transistors (TFTs).  相似文献   
76.
We have used localized surface plasmon resonance (LSPR) to monitor the structural changes that accompany thermal denaturing of bovine serum albumin (BSA) adsorbed onto gold nanospheres of size 5nm-60nm. The effect of the protein on the LSPR was monitored by visible extinction spectroscopy. The position of the resonance is affected by the conformation of the adsorbed protein layer, and as such can be used as a very sensitive probe of thermal denaturing that is specific to the adsorbed protein. The results are compared to detailed calculations and show that full calculations can lead to significant increases in knowledge where gold nanospheres are used as biosensors. Thermal denaturing on spheres with diameter > 20 nm show strong similarity to bulk calorimetric studies of BSA in solution. BSA adsorbed on nanospheres with d ⩽ 15nm shows a qualitative difference in behavior, suggesting a sensitivity of denaturing characteristics on local surface curvature. This may have important implications for other protein-nanoparticle interactions.  相似文献   
77.
Although discovered more than 100 years ago, X-ray source technology has evolved rather slowly. The recent invention of the carbon nanotube (CNT) X-ray source technology holds great promise to revolutionize the field of biomedical X-ray imaging. CNT X-ray sources have been successfully adapted to several biomedical imaging applications including dynamic micro-CT of small animals and stationary breast tomosynthesis of breast cancers. Yet their more important biomedical imaging applications still lie ahead in the future, with the development of stationary multi-source CT as a noteworthy example.  相似文献   
78.
Engineered magnetic nanoparticles (MNPs) hold great potential in environmental, biomedical, and clinical applications owing to their many unique properties. This contribution provides an overview of iron oxide MNPs used in environmental, biomedical, and clinical fields. The first part discusses the use of MNPs for environmental purposes, such as contaminant removal, remediation, and water treatment, with a focus on the use of zero-valent iron, magnetite (Fe3O4), and maghemite (γ-Fe2O3) nanoparticles, either alone or incorporated onto membrane materials. The second part of this review elaborates on the use of MNPs in the biomedical and clinical fields with particular attention to the application of superparamagnetic iron oxide nanoparticles (SPIONs), which have gained research focus recently owing to their many desirable features such as biocompatibility, biodegradability, ease of synthesis and absence of hysteresis. The properties of MNPs and their ability to work at both cellular and molecular levels have allowed their application in vitro and in vivo including drug delivery, hyperthermia treatment, radio-therapeutics, gene delivery, and biotherapeutics. Physiochemical properties such as size, shape, and surface and magnetic properties as well as agglomeration of MNPs and methods to enhance their stability are also discussed.  相似文献   
79.
王肖沐  甘雪涛 《中国物理 B》2017,26(3):34203-034203
Graphene and other two-dimensional materials have recently emerged as promising candidates for next-generation,high-performance photonics. In this paper, the progress of research into photodetectors and other electro-optical devices based on graphene integrated silicon photonics is briefly reviewed. We discuss the performance metrics, photo-response mechanisms, and experimental results of the latest graphene photodetectors integrated with silicon photonics. We also lay out the unavoidable performance trade-offs in meeting the requirements of various applications. In addition, we describe other opto-electronic devices based on this idea. Integrating two-dimensional materials with a silicon platform provides new opportunities in advanced integrated photonics.  相似文献   
80.
Graphene photonics has emerged as a promising platform for providing desirable optical functionality. However, graphene's monolayer‐scale thickness fundamentally restricts the available light matter interaction, posing a critical design challenge for integrated devices, particularly in wavelength regimes where graphene plasmonics is untenable. While several plasmonic designs have been proposed to enhance graphene light interaction in these regimes, they suffer from substantial insertion loss due to metal absorption. Here we report a non‐resonant metamaterial‐based waveguide platform to overcome the design bottleneck associated with graphene device. Such metamaterial structure enables low insertion loss even though metal is being utilized. By examining waveguide dispersion characteristics via closed‐form analysis, it is demonstrated that the metamaterial approach can provide optimized optical field that overlaps with the graphene monolayer. This enables graphene‐based integrated components with superior optical performance. Specifically, the metamaterial‐assisted graphene modulator can provide 5‐fold improvement in extinction ratio compared to Si nanowire, while reducing insertion loss by one order magnitude compared to plasmonic structures. Such a waveguide configuration thus allows one to maximize the optical potential that graphene holds in the telecom and visible regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号