首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   1篇
  国内免费   6篇
化学   84篇
晶体学   1篇
力学   2篇
数学   4篇
物理学   17篇
  2023年   9篇
  2022年   4篇
  2021年   9篇
  2020年   5篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2015年   2篇
  2014年   10篇
  2013年   2篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   10篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有108条查询结果,搜索用时 31 毫秒
21.
With the emergence of multidrug resistance (MDR) in many pathogens,bacterial infections are becoming a growing threat to public health.The frightening scenario is due largely to the formation of biofilms,in which the bacteria are extremely recalcitrant to the conventional antibiotic regimens.To address the emergence of MDR and biofilm-associated infections,numerous polymer-based materials have been designed and prepared recently.The subject of this perspective is the recent development of polymer-based materials that have been applied to combat multidrug-resistant pathogens,to prevent the formation of biofilms,or enhance the eradication efficacy to mature biofilms via killing biofilm-bacteria or dispersing biofilms.The advantages and shortcomings of these polymer-based materials are discussed,as well as the challenges we are facing in the clinical translation of these systems.  相似文献   
22.
These days our one of the major challenges is the treatment of polluted wastewater produced by the growing population and industrial activities. The conventional wastewater treatment methods are costly and need to be more advanced. For this reason, membrane technology has been used as an effective wastewater treatment method for many decades due to its high removal power, selectivity, and permeability properties. Biofouling causes a serious concern related to membrane permeability, shortens membrane life, and selectivity. Polymeric membranes are widely used in wastewater treatment due to their good pore-forming ability, higher flexibility, and relatively low costs but are limited to their hydrophobicity property and more susceptible to fouling. Metal oxides nanomaterials are widely used in the formation of polymer nanocomposite membranes because of their hydrophilicity, larger surface area, pore channels, and high toxicity towards pathogenic micro-organisms. In this review, we have discussed the factors affecting membrane biofouling and their conventional and current treatment methods with their limitations. We have also referred to the use of metal oxide nanomaterials, as an antibacterial agent, for the fabrication of polymer nanocomposite membranes and discuss their antibacterial activity with antibiofouling behavior.  相似文献   
23.
Antimicrobial photodynamic therapy (aPDT) is a non-pharmacological antimicrobial regimen based on light, photosensitizer and oxygen. It has become a potential method to inactivate multidrug-resistant bacteria. However, limited by the delivery of photosensitizer (PS) in biofilm, eradicating biofilm-associated infections by aPDT remains challenging. This study aimed to explore the feasibility of combining ultrasonic irradiation with aPDT to enhance the efficacy of aPDT against methicillin-resistant staphylococcus aureus (MRSA) biofilm. A cationic benzylidene cyclopentanone photosensitizer with much higher selectivity to bacterial cells than mammalian cells were applied at the concentration of 10 μM. 532 nm laser (40 mW/cm2, 10 min) and 1 MHz ultrasound (500 mW/cm2, 10 min, simultaneously with aPDT) were employed against MRSA biofilms in vitro. In addition to combined with ultrasonic irradiation and aPDT, MRSA biofilms were treated with laser irradiation only, photosensitizer only, ultrasonic irradiation only, ultrasonic irradiation and photosensitizer, and aPDT respectively. The antibacterial efficacy was determined by XTT assay, and the penetration depth of PS in biofilm was observed using a photoluminescence spectrometer and a confocal laser scanning microscopy (CLSM). In addition, the viability of human dermal fibroblasts (WS-1 cells) after the same treatments mentioned above and the uptake of P3 by WS-1 cells after ultrasonic irradiation were detected by CCK-8 and CLSM in vitro. Results showed that the percent decrease in metabolic activity resulting from the US + aPDT group (75.76%) was higher than the sum of the aPDT group (44.14%) and the US group (9.88%), suggesting synergistic effects. Meanwhile, the diffusion of PS in the biofilm of MRSA was significantly increased by 1 MHz ultrasonic irradiation. Ultrasonic irradiation neither induced the PS uptake by WS-1 cells nor reduced the viability of WS-1 cells. These results suggested that 1 MHz ultrasonic irradiation significantly enhanced the efficacy of aPDT against MRSA biofilm by increasing the penetration depth of PS. In addition, the antibacterial efficacy of aPDT can be enhanced by ultrasonic irradiation, the US + aPDT treatment demonstrated encouraging in vivo antibacterial efficacy (1.73 log10 CFU/mL reduction). In conclusion, the combination of aPDT and 1 MHz ultrasound is a potential and promising strategy to eradicate biofilm-associated infections of MRSA.  相似文献   
24.
再生水环境中304不锈钢生物膜腐蚀电化学特征   总被引:1,自引:0,他引:1  
李进  许兆义  李久义  焦迪 《物理化学学报》2010,26(10):2638-2646
研究了以再生水作为循环冷却系统补水的北京某热电厂冷却塔底粘泥中分离纯化培养出来的硫酸盐还原菌(SRB)生长特性.采用原子力显微镜(AFM)、扫描电镜(SEM)、能谱分析仪(EDS)和电化学交流阻抗(EIS)方法研究了304不锈钢(SS304)表面生物膜特征及其主要成分和不锈钢/生物膜界面电化学行为.结果显示,再生水环境下304不锈钢表面形成的生物膜是由吸附的SRB菌体及以含碳有机物为主的胞外聚合物和FeS腐蚀产物构成.浸泡前期(前7 d)SS304电极表面阻抗值主要由SS304表面钝化膜的贡献;浸泡后期(14 d后),电极体系阻抗值由不锈钢表面钝化膜和生物膜共同贡献.  相似文献   
25.
A large number of studies have shown the influence of the physico-chemical properties of a surface on microbial adhesion phenomenon. In this study, we considered that the presence of a bacterial biofilm may be regarded as a “conditioning film” that may modify the physico-chemical characteristics of the support, and thus the adhesion capability of planktonic micro-organisms coming into contact with this substratum. In this context, we adapted a protocol for biofilm formation that allows, under our experimental conditions, contact angle measurements, the reference method to determine the energetic surface properties of a substratum. This made it possible to determine the van der Waals, electron acceptor and electron donor properties of static biofilms grown at 25°C on stainless-steel slides with six Gram-positive bacteria isolated in dairy plants. A variance analysis indicated significant effects (P<0.05) of the bacterial strains and of the physiological state of the micro-organisms (planktonic or sessile) on the contact angles. To link the energetic properties of the six biofilms with direct adhesion experiments, we measured the affinity of fluorescent carboxylate-modified polystyrene beads for the different biofilm surfaces. The results correlated best with the electron-acceptor components of the biofilm surface energies, stressing the importance of Lewis acid–base interactions in adhesion mechanisms.  相似文献   
26.
Microphytobenthos Optical Model (MPBOM) provides the optical properties, absorption coefficient and refractive index, of a laboratory simulated microphytobenthic biofilm using the reflectance measurements derived from HySpex laboratory images, with the final aim of estimating photosynthetically active biomass. The high correlation between this biomass, expressed in chlorophyll a (mg Chl m−2) and the absorption coefficient at the corresponding absorption wavelength of Chl a (673 nm) made possible the estimation of biomass for any absorption coefficient calculated from reflectance measurements of any other data set. The latter was validated for an independent data set which performed an acceptable estimation of biomass in comparison with the biomass measured by HPLC (R2=0.93). Finally, this model is designed to be applied to hyperspectral images, like airborne or satellite, in order to map biomass in the field.  相似文献   
27.
Substituted bicyclic 2-pyridones, termed pilicides, prevent pilus assembly in uropathogenic Escherichia coli. Based on the bioactive methyl ester protected 2-pyridone 4, further functionalization at C-6 has yielded a set of new compounds, which have been evaluated for their ability to inhibit pilus formation in uropathogenic E. coli. The key intermediate in the synthesis was formylated 2-pyridone 5, which could be obtained via a Vilsmeier reaction. This versatile intermediate was converted into secondary and tertiary amines via reductive amination and could also be converted to other interesting functionalities using simple chemical transformations.  相似文献   
28.
Electrochemical impedance spectroscopy (EIS) is a versatile tool that is also exploited to study bioelectrochemical systems and biofilm electrodes. EIS can be used to examine characteristics of biofilm electrodes, which are not accessible by direct current measurements such as biofilm resistance and biofilm capacitance. EIS in microbial electrochemistry is sometimes applied superficially or evaluation of presented data is not comprehensive due to misinterpretation or missing data validation. This hinders a more widespread application of this method, not only for determination of specific biofilm electrode parameters but also from a more practical perspective, e.g. as tool for in situ condition monitoring of biofilm electrodes. We discuss how a careful choice of the experimental set-up, as well as extraordinary diligent EIS data interpretation using electrical equivalent circuit models can lead to conclusive data and meaningful insights. We illustrate the special challenges of studying biofilm electrodes on the example of graphite anodes. We provide an initial guidepost on how to use EIS on biofilm electrodes that requires several preconditions, careful choice of experimental parameters and, nearly mandatory for novices similar to us, the consultation of experienced operators of EIS.  相似文献   
29.
As researchers attempt to study quorum sensing in relevant clinical or environmental settings, it is apparent that many factors have the potential to affect signaling. These factors span a range of physical, chemical, and biological variables that can impact signal production, stability and distribution. Optimizing experimental systems to natural or clinical environments may be crucial for defining when and where quorum sensing occurs. These points are illustrated in our case study of S. aureus signaling in biofilms, where signal stability may be affected by the host environment. The basic signaling schemes have been worked out at the molecular level for a few of the major quorum-sensing systems. As these studies continue to refine our understanding of these mechanisms, an emerging challenge is to identify if and when the local environment can affect signaling.  相似文献   
30.
A selective oxygen biosensor based on bilirubin oxidase (BOx) was developed. The sensor was used for determining oxygen profiles in a membraneless, single‐chamber microbial fuel cell (SCMFC), fed with raw wastewater. The linear response of the sensor was optimized by a diffusion layer of silica gel. A computer‐controlled stage was used to obtain accurate and precise measurements. Oxygen concentration in biofilms covering electrodes was measured, showing 3 mg L?1 of O2 in the bulk solution, decreasing to 0 mg L?1 in the cathodic biofilm. The MFC generated power in the range of 0–0.08 mW, associated to the oxygen content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号