首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   667篇
  免费   18篇
  国内免费   152篇
化学   735篇
晶体学   4篇
综合类   2篇
物理学   96篇
  2023年   16篇
  2022年   10篇
  2021年   4篇
  2020年   15篇
  2019年   21篇
  2018年   10篇
  2017年   20篇
  2016年   16篇
  2015年   27篇
  2014年   32篇
  2013年   89篇
  2012年   30篇
  2011年   39篇
  2010年   34篇
  2009年   58篇
  2008年   44篇
  2007年   48篇
  2006年   44篇
  2005年   39篇
  2004年   42篇
  2003年   21篇
  2002年   27篇
  2001年   19篇
  2000年   15篇
  1999年   12篇
  1998年   9篇
  1997年   10篇
  1996年   13篇
  1995年   7篇
  1994年   13篇
  1993年   9篇
  1992年   15篇
  1991年   2篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1975年   1篇
  1967年   1篇
排序方式: 共有837条查询结果,搜索用时 15 毫秒
831.
After binding to human serum albumin, bilirubin could undergo photo-isomerization and photo-induced cyclization process. The latter process would result the formation of a product, named as lumirubin. These photo induced behaviors are the fundamental of clinical therapy for neonatal jaundice. Previous studies have reported that the addition of long chain fatty acids is beneficial to the generation of lumirubin, yet no kinetic study has revealed the mechanism behind. In this study, how palmitic acid affects the photochemical reaction process of bilirubin in Human serum albumin (HSA) is studied by using femtosecond transient absorption and fluorescence up-conversion techniques. With the addition of palmitic acid, the excited population of bilirubin prefers to return to its hot ground state (S0) through a 4 ps decay channel rather than the intrinsic ultrafast decay pathways (< 1 ps). This effect prompts the Z-Z to E-Z isomerization at the S$_0$ state and then further increases the production yield of lumirubin. This is the first time to characterize the promoting effect of long chain fatty acid in the process of phototherapy with femtosecond time resolution spectroscopy and the results can provide useful information to benefit the relevant clinical study.  相似文献   
832.
Selective oxidation of alcohols under mild conditions remains a long-standing challenge in the bulk and fine chemical industry, which usually requires environmentally unfriendly oxidants and bases that are difficult to separate. Here, a plasmonic catalyst of nitrogen-doped carbon-encapsulated metallic Co nanoparticles (Co@NC) with an excellent catalytic activity towards selective oxidation of alcohols is demonstrated. With light as only energy input, the plasmonic Co@NC catalyst effectively operates via combining action of the localized surface-plasmon resonance (LSPR) and the photothermal effects to achieve a factor of 7.8 times improvement compared with the activity of thermocatalysis. A high turnover frequency (TOF) of 15.6 h−1 is obtained under base-free conditions, which surpasses all the reported catalytic performances of thermocatalytic analogues in the literature. Detailed characterization reveals that the d states of metallic Co gain the absorbed light energy, so the excitation of interband d-to-s transitions generates energetic electrons. LSPR-mediated charge injection to the Co@NC surface activates molecular oxygen and alcohol molecules adsorbed on its surface to generate the corresponding radical species (e.g., ⋅O2, CH3O⋅ and R-⋅CH-OH). The formation of multi-type radical species creates a direct and forward pathway of oxidative esterification of benzyl alcohol to speed up the production of esters.  相似文献   
833.
IntroductionScientific evidence about biological profile of natural products can support their traditional uses. The current work was aimed to assess phytochemical and biological profile of nine medicinal plants collected from Herbalists.MethodsExtracts prepared in different solvents were subjected to phytochemical, antioxidant, enzyme inhibitory, cytotoxic, and antimicrobial activities. Reverse phase-high performance liquid chromatography (RP-HPLC) analysis was performed for the quantification of polyphenols.ResultsResults showed methanol extract (M) being potent as compared to others. Gentian lutea M showed maximum extract recovery (15.00 ± 0.11 % w/w) and TFC (30.82 ± 0.21 μg QE/mg extract). Nigella sativa M displayed highest TPC (44.99 ± 0.43 μg GAE/mg extract) and TAC (334.72 ± 0.35 μg AAE/ mg extract). Results showed noteworthy quantities of vanillic acid, rutin, kaempferol, emodin in ethyl acetate (EA) and methanol (M) extracts of plants assessed by RP-HPLC. Gentisic acid was highest (11.75 µg/mg extract) in T. arjuna M extract. Similarly, maximum %FRSA (82.28 ± 0.03 %) and TRP (160.40 ± 0.38 μg AAE/ mg extract) were depicted by Terminalia chebula and Chamomilla recutita, respectively. Moreover, Mentha longifolia and G. lutea M demonstrated noteworthy (p < 0.05) antibacterial activity against Staphylococcus aureus (14 ± 0.7 mm) and Klebsiella pneumoniae (12 ± 0.3 mm), respectively. Curcuma amada, C. recutita, Murraya koenigii and G. lutea M had significant α-glucosidase activity. Another good solvent for extraction was ethyl acetate (EA), whose extracts were secondary to methanol in producing significant biological profile. For example, EA of N. sativa (TPC: 1.46 ± 0.45 µg GAE/ mg extract), G. lutea (TRP: 160.33 ± 0.52 μg AAE/mg extract: ZOI of 12 ± 0.5 mm in K. pneumoniae) and Mormodica charantia (α-amylase inhibition: 39.5 ± 0.10 %) showed significant bioactivities. All extracts displayed mild antifungal protein kinase inhibition activities and were significantly (greater than80 %: p < 0.05) cytotoxic to brine shrimps with negligible hemolytic activity.ConclusionBriefly, variable polarity solvent extracts of studied plants will be processed for isolation of antioxidant, cytotoxic, carbohydrate enzyme inhibitory and antibacterial compounds.  相似文献   
834.
Inflammatory skin diseases (ISD) cause very severe itchy skin and dryness which is now a days an important issue which has to be taken care. Nanotechnology plays a main role in manufacturing cosmetic ingredients at a nanoscale size. Among different nanoparticles, gold (Au) is one of the non-toxic materials synthesized organically or inorganically. For synthesizing nanoparticles (NPs), using inorganic methods may cause some toxicity to cells, but using organic synthesis like plant extract is less toxic and environmentally friendly. Therefore, we synthesized DK-AuNPs using Diospyros kaki fruit extract. UPLC-MS/MS was used to evaluate phytochemicals responsible for converting salt into nanoparticles. The DK-AuNPs were characterized to confirm the formation of NPs. Furthermore, we analyzed the activity of DK-AuNPs on human keratinocytes (HaCaT cells). The DK-AuNPs showed 98.2 % cell survival upto 200 µg/mL against HaCaT cells. Additionally, compared to DK treatment, DK-AuNPs therapy decreased ROS production in TNF-α/IFN-γ (T + I) stimulated HaCaT cells by 68.7 %, whereas DK treatment reduced ROS generation by 27.8 %. Moreover, the skin anti-inflammatory potential and moisturizing effect of DK-AuNPs were analyzed using HaCaT cells. Furthermore, skin inflammatory activity biomarkers were downregulated through the MAPK/NFκB signaling pathway and showed significant inhibition by DK-AuNPs. Also, the skin moisturizing biomarkers such as HAS (1–3) were upregulated and HYAL (1–2) were downregulated by PI3K/AKT/NFκB through HAS2 regulation. Therefore, skin anti-inflammatory and moisturizing activity were enhanced by treatment with DK-AuNPs. In summary, we conclude that the DK-AuNPs could be a new alternative for skin disease.  相似文献   
835.
The electrooxidation of phenol was studied in the presence of sodium 4-vinylbenzenesulfonate in various quantities. When the sulphonate was dissolved in equal or higher quantities than phenol the peak currents increased gradually and suppression of electropolymerization was observed. When the sulphonate quantity was smaller than that of phenol brown films fouled the electrode. The observed phenomenon was utilized in an analytical procedure namely determination of unreacted phenol in electrolysis solution with linear dynamic range between 0 and 50 mM and 2.96 mM detection limit. The shape of curve became saturated-like above 50 mM.  相似文献   
836.
Oxymethylene ethers (OMEs) form an interesting family of synthetic compounds to replace fossil fuels. This alternative liquid energy carrier can contribute to a circular carbon economy when produced via carbon capture and utilization technology using renewable electricity. Despite the potential to reduce greenhouse gas and particulate matter emissions and their ideal ignition characteristics, little is known about the thermal decomposition behavior of OMEs. In this work, new insights are obtained in the pyrolysis chemistry of oxymethylene ether-2 (OME-2) and the role of carbenes by performing experiments at high temperatures (> 850 K) in a tubular quartz reactor. The used continuous bench-scale pyrolysis unit has a dedicated on-line analysis section including comprehensive two-dimensional gas chromatography (GC × GC) coupled with flame ionization detection (FID) and mass spectroscopy (MS) to identify and quantify the full product spectrum over the complete temperature range. The reactor temperature was varied between 850 and 1150 K at a fixed pressure of 0.15 MPa and residence times of 400 to 850 ms. The major products are dimethoxymethane, formaldehyde, methyl formate, methane, CO2, CO and H2. Minor intermediate compounds comprise dimethyl ether, formic anhydride, formic acid, methoxymethyl formate and methoxymethanol. The yields of compounds with carbon-carbon bonds are low since no such bonds originally occur in OME-2. Precursors of aromatic compounds and soot particles are absent in the reactor effluent. The experimental results are simulated with a new first principles-based kinetic model for pyrolysis and combustion of OME-2. This model can predict the experimental trends of major products on average within the experimental uncertainty margin of ± 10% relative for major product species. A reaction pathway and sensitivity analysis are presented to highlight the importance of the carbenes for initiation of the radical chemistry under pyrolysis conditions.  相似文献   
837.
《印度化学会志》2023,100(5):100976
Cyclodextrins (CDs) are cyclic oligosaccharides made up of d-glucose units connected by 1,4-glucosidic linkages. β-CD is a cyclical starch derivative containing seven glucopyranose units. β-CD derivatives have characteristic property of larger surface area, robust mechanical strength, high surface to volume ratio, electrical and optical properties for analyte determination, good dispersion, easy removal of the template, surface modification, functionalization and handling capacity. In this work, an attempt is made to prepare succinyl-β-CD-acrylamide (S-β-CD-AA) copolymer and β-CD-malic anhydride (β-CD-MAH) copolymer. For the synthesis of S-β-CD-AA, S-β-CD derivative is prepared and further, acrylamide (AA) along with cross-linker undergoes free radical copolymerization for the formation of gel like product. The degree of succinylation (DS) of β-CD derivative is estimated. S-β-CD-AA copolymer showed potential swelling, and deswelling characteristic. Another copolymer is prepared from β-CD malic anhydride derivative. Further, the derivative is treated with cellulose and ethylene diamine tetra acetate (EDTA) to form β-CD-MAH copolymer. The two derivatives are characterized by several techniques. Thermal stability of these copolymers is estimated with the help of thermogravimetric analysis. The basic characterization of the presence of functional groups is done using UV–visible spectroscopy, and infrared spectroscopy. The elemental analysis helped to estimate C, H, N, S in the synthesized compounds. The surface morphology characterization is done with the help of scanning electron microscopy. X-ray diffraction analysis helped in determination of crystal structure of β-CD-MAH. β-CD derivatives prepared may be potential candidate to prepare inclusion complex, in drug delivery, drug loading and several similar applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号