首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4337篇
  免费   1042篇
  国内免费   627篇
化学   3584篇
晶体学   40篇
力学   197篇
综合类   21篇
数学   83篇
物理学   2081篇
  2024年   16篇
  2023年   68篇
  2022年   145篇
  2021年   175篇
  2020年   245篇
  2019年   183篇
  2018年   150篇
  2017年   173篇
  2016年   245篇
  2015年   232篇
  2014年   323篇
  2013年   383篇
  2012年   319篇
  2011年   326篇
  2010年   258篇
  2009年   277篇
  2008年   296篇
  2007年   247篇
  2006年   231篇
  2005年   215篇
  2004年   232篇
  2003年   176篇
  2002年   131篇
  2001年   109篇
  2000年   105篇
  1999年   94篇
  1998年   95篇
  1997年   84篇
  1996年   80篇
  1995年   58篇
  1994年   59篇
  1993年   40篇
  1992年   45篇
  1991年   27篇
  1990年   26篇
  1989年   17篇
  1988年   19篇
  1987年   12篇
  1986年   18篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   11篇
  1981年   7篇
  1980年   7篇
  1979年   9篇
  1977年   3篇
  1976年   3篇
  1974年   4篇
  1973年   2篇
排序方式: 共有6006条查询结果,搜索用时 0 毫秒
121.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   
122.
The nature of halogen bonding is examined via experimental and computational characterizations of a series of associates between electrophilic bromocarbons R? Br (R? Br=CBr3F, CBr3NO2, CBr3COCBr3, CBr3CONH2, CBr3CN, etc.) and bromide anions. The [R? Br, Br?] complexes show intense absorption bands in the 200–350 nm range which follow the same Mulliken correlation as those observed for the charge‐transfer associates of bromide anions with common organic π‐acceptors. For a wide range of the associates, intermolecular R? Br???Br? separations decrease and intramolecular C? Br bond lengths increase proportionally to the Br?→R? Br charge transfer; and the energies of R? Br???Br? bonds are correlated with the linear combination of orbital (charge‐transfer) and electrostatic interactions. On the whole, spectral, structural and thermodynamic characteristics of the [R? Br, Br?] complexes indicate that besides electrostatics, the orbital (charge‐transfer) interactions play a vital role in the R? Br???Br? halogen bonding. This indicates that in addition to controlling the geometries of supramolecular assemblies, halogen bonding leads to electronic coupling between interacting species, and thus affects reactivity of halogenated molecules, as well as conducting and magnetic properties of their solid‐state materials.  相似文献   
123.
采用喷雾辅助气相沉积法在水热法合成的ZnO纳米线上沉积CdS纳米颗粒。采用X射线衍射仪(XRD)、激光拉曼仪(Raman)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱分析谱(XPS)和紫外可见漫反射光谱等测试手段对复合光催化剂进行表征。结果表明,3~10 nm的CdS纳米粒子修饰在直径约为100 nm ZnO纳米线的表面。XPS和Raman表明复合材料中ZnO和CdS之间存在化学相互作用。可见光催化降解罗丹明B实验结果表明ZnO/CdS复合材料的催化性能优于单相CdS或ZnO,沉积时间为30 s合成的ZnO/CdS速率常数分别是CdS和ZnO的2.91和4.03倍,且具有较高的稳定性。ZnO/CdS复合材料光催化性能增强的可能原因为光吸收范围的拓展和光生载流子分离效率的提高。  相似文献   
124.
A method for enantiodiscrimination of α-chiral aldehydes is reported. The method utilizes circular dichroism (CD) spectroscopy and a sensing ensemble composed of 2-(1-methylhydrazinyl) pyridine (1) and Fe(II)(TfO)2. Aldehydes react rapidly with hydrazine (1) to form chiral imines, which form complexes with Fe(II). By monitoring the CD bands above 320 nm, one can determine the enantiomeric excess (ee) values of α-chiral aldehydes with an average absolute error of ±5%. The analysis was fast, and thus can have potential applications in high-throughput screening (HTS) of catalytic asymmetric induction.  相似文献   
125.
Uniform cadmium sulfide (CdS) nanospheres were successfully prepared in the presence of the anionic surfactant sodium dodecylsulfate (SDS) at an appropriate concentration and relatively low temperature. Zeta potential data were collected for the three kinds of CdS particles to verify the existence of the Cd2+counterion on the CdS surface and Charge reversal; this was crucial for the explanation of how the anionic SDS surfactant molecules adsorbed on the negatively charged surface. Moreover, we confirmed that SDS had coated the surface of CdS nanospheres using infrared spectroscopy, and thermogravimetric analysis. An counterion assisted mechanism accounting for synthesis of CdS nanospheres could be widely used in the synthesis of nanomaterials if there is specific adsorption of the counterion. The CdS nanospheres showed good performance for the rapid adsorption of methylene blue.  相似文献   
126.
127.
The toxic gases,such as CO and NO,are highly dangerous to human health and even cause the death of person and animals in a tiny amount.Therefore,it is very necessary to develop the toxic gas sensors that can instantly monitor these gases.In this work,we have used the first-principles calculations to investigate adsorption of gases on defective graphene nanosheets to seek a suitable material for CO sensing.Result indicates that the vancancy graphene can not selectivly sense CO from air,because O2 in air would disturb the sensing signals of graphene for CO,while the nitrogen-doped graphene is an excellent candidate for selectivly sensing CO from air,because only CO can be chemisorbed on the pyridinic-like N-doped graphene accompanying with a large charge transfer,which can serve as a useful electronic signal for CO sensing.Even in the environment with NO,the N-doped graphene can also detect CO selectively.Therefore,the N-doped graphene is an excellent material for selectively sensing CO,which provides useful information for the design and fabrication of the CO sensors.  相似文献   
128.
《印度化学会志》2022,99(11):100767
The optimized geometric parameters of the 2-Amino-6-chlorofluoren-9-one (2A6CF9O) compound were estimated by employing density functional theory. The electronic characteristics of the molecule were explored using molecular frontier orbital energies and the MEP surface. Kamlet's and Catalan's multiple linear regression techniques along with different polarity functions were used to investigate the influence of pure solvents on spectral properties. In the system, both general solute-solvent and hydrogen bonding interactions are active. However, as compared to normal solute-solvent interactions, hydrogen bonding interactions have a smaller role. In addition, using computed ground state dipole moment, solvatochromic correlations were employed to infer excited state dipole moment.  相似文献   
129.
The ambitious goal of artificial photosynthesis is to develop active systems that mimic nature and use light to split water into hydrogen and oxygen. Intramolecular design concepts are particularly promising. Herein, we firstly present an intramolecular photocatalyst integrating a perylene-based light-harvesting moiety and a catalytic rhodium center ( RhIIIphenPer ). The excited-state dynamics were investigated by means of steady-state and time-resolved absorption and emission spectroscopy. The studies reveal that photoexcitation of RhIIIphenPer yields the formation of a charge-separated intermediate, namely RhIIphenPer ⋅ + , that results in a catalytically active species in the presence of protons.  相似文献   
130.
Removal of metal ions from water can not only alleviate the scaling problem of domestic and industrial water, but also solve the water safety problem caused by heavy metal ion pollution. Here, we fabricate a positively charged nanofiltration membrane via surfactant-assembly regulated interfacial polymerization(SARIP) of 2-methylpiperazine(MPIP) and trimesoyl chloride(TMC). Due to the existence of methyl substituent, MPIP has lower reactive activity than piperazine(PIP) but stronger affinity to hexane, resulting in a nanofiltration(NF) membrane with an opposite surface charge and a loose polyamide active layer. Interestingly, with the help of sodium dodecyl sulfate(SDS) assembly at the water/hexane, the reactivity between MPIP and TMC was obviously increased and caused in turn the formation of a positively charged polyamide active layer with a smaller pore size, as well as with a narrower pore size distribution. The resulting membrane shows a highly efficient removal of divalent cations from water, of which the rejections of MgCl2, CoCl2 and NiCl2 are higher than 98.8%, 98.0% and 98.0%, respectively, which are better than those of most of other positively charged NF membranes reported in literatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号