首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   47篇
  国内免费   16篇
化学   67篇
晶体学   12篇
综合类   1篇
物理学   377篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   11篇
  2013年   6篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   72篇
  2008年   64篇
  2007年   51篇
  2006年   30篇
  2005年   8篇
  2004年   8篇
  2003年   22篇
  2002年   26篇
  2001年   18篇
  2000年   17篇
  1999年   19篇
  1998年   19篇
  1997年   7篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1985年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有457条查询结果,搜索用时 265 毫秒
401.
Ag-embedded SiO2 thin films are prepared by oblique angle deposition. Through field emission scanning electron microscopy (SEM), an orientated slanted columnar structure is observed. Energy-dispersive x-ray (EDX) analysis shows the Ag concentration is about 3% in the anisotropic SiO2 matrix. Anisotropic surface plasma resonance (SPR) absorption is observed in the Ag-embedded SiO2 thin films, which is dependent on polarization state and incidence angle of two orthogonal polarized lights and the deposition angle. This means that optical properties and anisotropic SPR absorption can be tunable in Ag-embedded SiO2 thin films. Broadband polarization splitting is also observed and the transmission ratio Tp/Ts between p- and s-polarized lights is up to 2.7 for thin films deposited at a = 70°, which means that Ag-embedded SiO2 thin films are a promising candidate for thin film polarizers.  相似文献   
402.
The magnetic properties and electronic structure of Mn2NiZ (Z=In, Sn, Sb) have been studied. The magnetic structure of these alloys is mainly determined by the main-group element Z instead of the distance between the Mn atoms. Electronic structure calculations suggest that Mn2NiIn and Mn2NiSn are both ferrimagnets with antiparallel alignment between the Mn moments. But this antiferromagnetic coupling is weakened by the increasing number of valence electrons of the Z atoms. When it comes to Mn2NiSb, a ferromagnetic coupling between the Mn atoms is observed. Mn2NiSn and Mn2NiSb have been synthesized successfully. Their Ms at 5 K agree well with the theoretical value.  相似文献   
403.
Shijing Gong 《Physics letters. A》2009,373(42):3892-3896
The persistent spin helix discovered in intrinsic spin-orbit coupled systems previously is reexamined using the motion equations of Green's functions by considering the effect of extrinsic impurity-induced spin-orbit coupling. We find both the intrinsic and extrinsic spin-orbit couplings can increase the excitation energy of spin helix. They together can reduce drastically the lifetime of the spin helix, making it severely departure from the ideal infinite value. The effect of impurity density on spin helix is also analyzed. The results may be helpful to understand experimental measurements on spin helix.  相似文献   
404.
CaAl2O4:Eu2+ co-doped with varying concentrations of Er3+ was prepared by solid-state reaction method. Prepared materials with 1 mol% Eu2+ and 2-10 mol% of Er3+ were investigated for their photoluminescence properties. Phase, morphology and crystalline structure were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Broad band UV-excited luminescence was observed for CaAl2O4:Eu2+, Er3+ in the blue region (λmax=440 nm) due to transitions from 4f65d1 to the 4f7 configuration of the Eu2+ ion. The Er3+ ion co-doping generates deep traps, which results in longer decay time for phosphorescence.  相似文献   
405.
Long silicon nitride (Si3N4) nanowires with high purity were synthesized by heating mixtures of SiO2 powders and short carbon fibers at 1430°C for 2 h in a flowing N2 atmosphere. The nanowires had the length of 1–2 millimeters and the diameters of 70–300 nm, and were mainly composed of -Si3N4, growing along the [001] direction. The vapor–solid (VS) mechanism was employed to interpret the nanowires growth.  相似文献   
406.
A statistical data analysis methodology was developed to evaluate the field emission properties of many samples of copper oxide nanostructured field emitters. This analysis was largely done in terms of Seppen-Katamuki (SK) charts, field strength and emission current. Some physical and mathematical models were derived to describe the effect of small electric field perturbations in the Fowler-Nordheim (F-N) equation, and then to explain the trend of the data represented in the SK charts. The field enhancement factor and the emission area parameters showed to be very sensitive to variations in the electric field for most of the samples. We have found that the anode-cathode distance is critical in the field emission characterization of samples having a non-rigid nanostructure.  相似文献   
407.
The evolution of microstructure and optical properties of TiO2 sculptured thin films under thermal annealing is reported. XRD, field emission SEM, UV-Vis-NIR spectra are employed to characterize the microstructural and optical properties. It is found that the optimum annealing temperature for linear birefringence is 500℃. The maximum of transmission difference for linear birefringence is up to 18%, which is more than twice of that in as-deposited thin films. In addition, the sample annealed at 500℃ has a minimum of column angle about 12℃. The competitive process between the microstructural and optical properties is discussed in detail. Post-annealing is a useful method to improve the linear birefringence in sculptured thin films for practical applications.  相似文献   
408.
TiO2-δ nanoparticles are synthesized by the sol-gel method and annealed under different reducing atmosphere. The x-ray diffraction patterns show that anatase is the dominant phase with small amounts of the futile phase of TiO2-δ for all the samples. Magnetic measurements indicate that the samples annealed in reducing atmosphere exhibit unprecedented room-temperature ferromagnetism, in particular, the saturation magnetization Ms is up to about 8.6 × 10^-3 emu/g for the sample annealed in H2/Ar mixture. Analysis of the x-ray photoelectron spectroscopy spectra for the samples processed under different conditions indicates that the amounts of Ti^3+ or Ti^2+ cations, namely, the concentration of oxygen vacancies, increase with intensifying reducing atmosphere during processing, which shows that ferromagnetism in this material strongly depends on the concentration of oxygen vacancies. The relationships between the ferromagnetism and the crystal structure as well as the grain size in this material are also discussed.  相似文献   
409.
From the results of first principles tight-binding linear muffin-tin orbital (TB-LMTO) calculations, half-metallic ferromagnetism is proposed in Zn(TM)O2 with a chalcopyrite structure. The calculated electronic and magnetic property shows that consistent with the integer value for the total magnetic moment, half metallicity is obtained for ZnCrO2, ZnMnO2, ZnFeO2, ZnCoO2 and ZnNiO2. A careful analysis of the spin density reveals the ferromagnetic coupling between the p–d states and the cation dangling-bond p states, which is believed to be responsible for the stabilization of the ferromagnetic phase. The calculated heat of formation, bulk modulus and cohesive energy are reported.  相似文献   
410.
The effect of doping with Cr on the electronic structure and magnetism of Co3Al has been studied by density functional calculations. It has been found that the Cr atom has a strong site preference for the B-site in Co3Al. With the substitution of Cr for Co, the total densities of states (DOS) change obviously: A DOS peak appears at EF in the majority spin states and an energy gap is opened in the minority spin states. The effect of Cr in Co3Al is mainly to push the antibonding peak of the Co (A,C) atoms high on the energy scale and to form the energy gap around EF, and also to contribute to the large DOS peak at EF in the majority spin direction. The calculations indicate a ferromagnetic alignment between the Co and Cr spin moments. The calculated total magnetic moment decreases and becomes closer to the Slater–Pauling curve with increasing Cr content. This is mainly due to the decrease of the Co (A,C) spin moments. At the same time, the moments of Co (B) and Cr (B) only change slightly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号