首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   47篇
  国内免费   16篇
化学   69篇
晶体学   12篇
综合类   1篇
物理学   377篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   11篇
  2013年   6篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   72篇
  2008年   64篇
  2007年   51篇
  2006年   30篇
  2005年   8篇
  2004年   8篇
  2003年   22篇
  2002年   26篇
  2001年   18篇
  2000年   17篇
  1999年   19篇
  1998年   19篇
  1997年   7篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1985年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有459条查询结果,搜索用时 15 毫秒
291.
292.
The structure and stability of Be6, Be, and Be clusters have been investigated at the B3LYP, B3PW91, and second‐order Møller–Plesset (MP2) levels of theory, along with the 6‐311G* basis set for neutral and cationic clusters and the 6‐311+G* basis set for anion clusters. CCSD(T)/6‐311+G* has also been used to calculate some neutral structure to find the most stable structure. Twelve Be6, six Be, and eight Be isomers are identified. The distortion octahedron structure, pentagonal pyramids structure, and trapezoidal bipyramid structure are found to be the most stable structure on the neutral, cationic, and anionic surface, respectively. They are in agreement with the results reported previously. Natural bond orbital (NBO) analysis, molecular orbital (MO) pictures, and the nucleus independent chemical shift (NICS) values suggest aromatic of the neutral and cationic clusters and antiaromatic of the anionic cluster. The multi‐center σ bonds and delocalized π bonds play important role in the bonding of the beryllium clusters. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
293.
The design of new materials is an important subject in order to attain new properties and applications, and it is of particular interest when some peculiar topological properties such as reduced dimensionality and rule‐breaking chemical bonding are involved. In this work, we designed a novel two‐dimensional (2D) inorganic material, namely Be2C monolayer, by comprehensive density functional theory (DFT) computations. In Be2C monolayer, each carbon atom binds to six Be atoms in an almost planar fashion, forming a quasi‐planar hexacoordinate carbon (phC) moiety. Be2C monolayer has good stability and is the lowest‐energy structure in 2D space confirmed by a global minima search based on the particle‐swarm optimization (PSO) method. As a semiconductor with a direct medium band gap, Be2C monolayer is promising for applications in electronics and optoelectronics.  相似文献   
294.
Hybrid Pt-CdSe nanocomposite was fabricated by a two-step chemical route. Cadmium selenide (CdSe) quantum rods (QRs) were prepared by a one-pot approach with tunable size. After ligand exchange, CdSe QRs were loaded with monodisperse 1.9 nm Pt nanopaticles in aqueous solution. Transmission electron microscopy (TEM) revealed the morphology of the Pt-CdSe nanostructure, and the decreased photoluminescence (PL) intensity demonstrated that electron and hole separation can be enhanced after loading Pt on CdSe QRs. X-ray photoelectron energy spectrum (XPS) was applied to confirm the existence of Pt and detect the Pt mass concentration of 3%.  相似文献   
295.
We propose to use the exciton coupling between electrons and holes in different quantum wells to reach a strong Coulomb drag effect. The drag has to be really strong below the Mott transition when the most of the carriers are bound in excitons. We suggest to use the exciton drag for fabrication of DC transformer. Preliminary estimates for Si/SiO2/Si structure give the Mott transition temperature of the order of 100 K.  相似文献   
296.
The silicon nanoporous pillar array (Si-NPA) is synthesized by using hydrothermal etching method, and the electron field emission properties are studied. The results show that Si-NPA has a low turn-on field of 1.48 V/μm at the emission current of 0.1 μA and its field emission is relatively stable. The field emission enhancement of Si-NPA is believed to originate from its unique morphology and structure. Our finding demonstrates that the Si-NPA is a promising candidate material for field emission applications.  相似文献   
297.
The effect of the AlGaN electron blocking layer (EBL) thickness on the electrical and optical properties of 310 nm AlGaN single quantum well (SQW) light-emitting diodes (LEDs) has been investigated. A large ideality factor extracted from the current–voltage (IV) characteristics indicates that a tunneling mechanism dominates the carrier transport process in the LEDs. The ideality factor decreases with increasing EBL thickness suggesting that deep-level state assisted tunneling is reduced. In addition, the QW emission intensity is enhanced with the introduction of an EBL due to the reduction of electron overflow to the p-type layer. The QW emission intensity is sensitive to the EBL thickness. This is attributed to the reduction of electron tunneling to the p-type layer with an EBL.  相似文献   
298.
A large variety of trapping and guiding potentials can be designed by bringing cold atoms close to charged or current-carrying material objects. Using a current-carrying wire we demonstrate how to build guides and traps for neutral atoms and using a charged wire we study a 1/r 2 singularity. The simplicity and versatility of the principles demonstrated in our experiments will allow for miniaturization and integration of atom optical elements into matter-wave quantum circuits. Received: 13 December 1998 / Revised version: 8 July 1999 / Published online: 8 September 1999  相似文献   
299.
In this paper, we developed a generalized and greener composite-surfactants-assisted-solvothermal process (CSSP) to produce colloidal nanoparticles of metal sulfides. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectra (XPS) revealed that single-molecular-layer type of MoS2 nanoparticles with diameter 6–10 nm were successfully synthesized. The molecular structure model of the capped MoS2 nanoparticles was suggested through further examination by infrared spectra. Hexagonal CdS nanocrystals with spherical, triangle, and hollow sphere shapes were controllably synthesized by varying the experimental conditions. A possible in-situ reduction–sulfidation mechanism was proposed for the formation of Ag2S nanocrystals, where the metal ions were reduced to metallic nanoparticles before the generation of sulfides. The obtained nanocrystals through this CSSP approach could provide the building blocks for the bottom-up approach to nanoscale fabrication in nanoscience and nanotechnology.  相似文献   
300.
Experimental set-up for studying effects of a strong magnetic field on a structure and a decay dynamics of molecules, was designed and constructed. A vacuum chamber, in which a molecular beam propagated, was mounted in a bore of a superconducting magnet. Laser light crossed the molecular beam in the magnetic field and excited the molecules. Fragment or parent ions produced through sequential decay processes, were extracted by an electric field parallel to the magnetic field and detected by a microchannel plate. By measuring the time-of-flight from the photo-excitation to the ion-detection, a species of ions —mass and charge state— was identified. A performance of the set-up was demonstrated using the resonance enhanced multiphoton ionization process through the X2Π-A2Σ+ transition of nitric oxide (NO) molecules. A mass resolution m/Δm ≥180±6 was obtained in the field up to 10 T. This was the first successful result demonstrating the sufficient mass resolution obtained by the time-of-flight technique in the strong magnetic field up to 10 T. Parent NO+ ions were selectively detected by the mass spectrometer and the ion current was measured as a function of the frequency of the laser light. Rotational transition lines were measured with a sufficient S/N ratio in the field up to 10 T.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号