首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
  国内免费   1篇
化学   61篇
综合类   1篇
物理学   4篇
  2023年   1篇
  2022年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2013年   6篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   7篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
51.
For the first time, electromembrane extraction combined with liquid chromatography and tandem mass spectrometry was applied for the determination of urinary benzene, toluene, ethylbenzene, and xylene metabolites. S‐Phenylmercapturic acid, hippuric acid, phenylglyoxylic acid, and methylhippuric acid isomers were extracted from human urine through a supported liquid membrane consisting of 1‐octanol into an alkaline acceptor solution filling the inside of a hollow fiber by application of an electric field. Various extraction factors were investigated and optimized using response surface methodology, the statistical method. The optimum conditions were established to be 300 V applied voltage, 15 min extraction time, 1500 rpm stirring speed, and 5 mM ammonium acetate (pH 10.2) acceptor solution. The method was validated with respect to selectivity, linearity, accuracy, precision, limit of detection, limit of quantification, recovery, and reproducibility. The results showed good linearity (r2 > 0.995), precision, and accuracy. The extract recoveries were 52.8–79.0%. Finally, we applied this method to real samples and successfully measured benzene, toluene, ethylbenzene, and xylene metabolites.  相似文献   
52.
The possibility of quantitative analysis of aromatic hydrocarbons in oil-based asphalt release agents was investigated using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS). The target analytes studied were benzene, toluene, ethylbenzene, p-, m-, and o-xylene (BTEX) and 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. Experimental parameters influencing HS-SPME efficiency were studied (equilibration time between sample and headspace and between headspace and SPME fiber, sample amount and sample matrice effects). A HS-SPME method using hexadecane as a surrogate matrice was developed. The detection limit was estimated as 0.03-0.08 ppm (w/w) for the target analytes investigated. Good linearity was observed (R2 > 0.999) for all calibration curves at high, medium and low concentration level. The repeatability of the method (RSD, relative standard deviation) was found to be less than 10% (generally less than 5%) in triplicate samples and approximately 2% at eight consecutive tests on one and the same sample. The accuracy of the method given by recovery of spiked samples was between 85 and 106% (generally between 95 and 105%). The HS-SPME method developed was applied to four commercially available asphalt release agents. External calibration and standard addition approaches were investigated regarding accuracy. The results showed that standard addition generates higher accuracy than external calibration. The contents of target aromatic hydrocarbons in the asphalt release agents studied varied greatly from approximately 0.1-700 ppm. The method described looks promising, and could be a valuable tool for determination of aromatic hydrocarbons in different types of organic matrices.  相似文献   
53.
《Electroanalysis》2018,30(9):2077-2084
Calixarenes are exciting class of organic macromolecules and proved to be an excellent sensing material for optical and mass transaction based sensors. The limited conductivity of calixarenes is a major impediment for the development of calixarene‐only chemiresistive sensors. The authors report on a calixarene‐based chemiresistor that is based on a hybrid material obtained by non‐covalent functionalization of SWCNTs with calixarene. This has two beneficial effects: (a) The use of SWCNT eliminates the conductivity issue, and this enables low‐power chemiresistive sensing; (b) the excellent affinity of calixarenes for certain analytes improves sensitivity. The hybrid material was fabricated by solvent casting, and its formation was confirmed by structural (SEM and TEM), electrical (IDVD and IDVG), and spectroscopic (Raman and ATR‐IR) characterizations. The resulting sensing device, operated typically at +1 V, undergoes an increase in resistance upon exposure to successive increments in concentration from 50 to 250 ppm for benzene, toluene, ethylbenzene and xylenes, commonly known as BTEX. Respective limits of detection are 25, 7.5, 6.5, and 4 ppm. This is well below their Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) except for benzene. A mechanistic study for BTEX was performed via field‐effect transistor measurements, and this suggested that the sensing mechanism is dominated by an electrostatic gating effect. In our perception, the availability of a wide variety of calixarenes generates wide perspectives for calixarene‐only based SWCNT‐calixarene hybrid sensor arrays for the realization of electronic nose application.  相似文献   
54.
A solid-phase microextraction (SPME) fiber coated with single walled carbon nanotubes (SWCNTs) was prepared by electrophoretic deposition and treated at 500 °C in H2 stream. In order to evaluate the characteristics of the obtained fiber, it was applied in the headspace solid-phase microextraction (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample and quantification by gas chromatography with flame ionization detection (GC-FID). The results indicated that the thermal treatment with H2 enhanced the extraction of the SWCNTs fiber for BTEX significantly. Thermal stability and durability of the fiber were also investigated, showing excellent stability up to 350 °C and life time over 120 times. In the comparison with the commercial CAR–PDMS fiber, the SWCNTs fiber showed similar and higher extraction efficiencies for BTEX. Under the optimized conditions, the linearity, LODs (S/N = 3) and LOQs (S/N = 10) of the method based on the SWCNTs fiber were 0.5–50.0, 0.005–0.026 and 0.017–0.088 μg/L, respectively. Repeatability for one fiber (n = 3) was in the range of 1.5–5.6% and fiber-to-fiber reproducibility (n = 3) was in the range of 4.2–8.3%. The proposed method was successfully applied in the analysis of BTEX compounds in seawater, tap water and wastewater from a paint plant.  相似文献   
55.
The directly suspended droplet microextraction (DSDME) technique coupled with the capillary gas chromatography-flame ionization detector (GC-FID) was used to determine BTEX compounds in aqueous samples. The effective parameters such as organic solvent, extraction time, microdroplet volume, salt effect and stirring speed were optimized. The performance of the proposed technique was evaluated for the determination of BTEX compounds in natural water samples. Under the optimal conditions the enrichment factors ranged from 142.68 to 312.13, linear range; 0.01-20 μg mL−1, limits of detection; 0.8-7 ng mL−1 for most analytes. Relative standard deviations for 0.2 μg mL−1 of BTEX in water were in the range 1.81-2.47% (n = 5). The relative recoveries of BTEX from surface water at spiking level of 0.2 μg mL−1 were in the range of 89.87-98.62%.  相似文献   
56.
This paper describes the establishment of a robust method to determine compound specific δD and δ(13)C values of volatile organic compounds (VOCs) in a standard mixture ranging between C(6) and C(10) and was applied to various complex emission samples, e.g. from biomass combustion and car exhaust. A thermal desorption (TD) unit was linked to a gas chromatography isotope ratio mass spectrometer (GC-irMS) to enable compound specific isotope analysis (CSIA) of gaseous samples. TenaxTA was used as an adsorbent material in stainless steel TD tubes. We determined instrument settings to achieve a minimal water background level for reliable δD analysis and investigated the impact of storage time on δD and δ(13)C values of collected VOCs (176 days and 40 days of storage, respectively). Most of the standard compounds investigated showed standard deviations (SD)<6‰ (δD) when stored for 148 days at 4 °C. However, benzene revealed occasionally D depleted values (21‰ SD) for unknown reasons. δ(13)C analysis demonstrated that storage of 40 days had no effect on VOCs investigated. We also showed that breakthrough (benzene and toluene, 37% and 7%, respectively) had only a negligible effect (0.7‰ and 0.4‰, respectively) on δ(13)C values of VOCs on the sample tube. We established that the sample portion collected at the split flow effluent of the TD unit can be used as a replicate sample for isotope analysis saving valuable sampling time and resources. We also applied TD-GC-irMS to different emission samples (biomass combustion, petrol and diesel car engines exhaust) and for the first time δD values of atmospheric VOCs in the above range are reported. Significant differences in δD of up to 130‰ were observed between VOCs in emissions from petrol car engine exhaust and biomass combustion (Karri tree). However, diesel car emissions showed a high content of highly complex unresolved mixtures thus a baseline separation of VOCs was not achieved for stable hydrogen isotope analysis. The ability to analyse δD by TD-GC-irMS complements the characterisation of atmospheric VOCs and is maybe used for establishing further source(s).  相似文献   
57.
In this study, poly(ethylene glycol) (PEG) grafted onto multi-walled carbon nanotubes (PEG-g-MWCNTs) were synthesized by the covalent functionalization of MWCNTs with hydroxyl-terminated PEG chains. For the first time, functionalized product of PEG-g-MWCNTs was used as selective stationary phase to prepare the sol-gel solid-phase microextraction (SPME) fiber in combination with gas chromatography-flame ionization detector (GC-FID) for the determination of ultra-trace levels of benzene, toluene, ethylbenzene and o-xylene (BTEX) in real water samples. The PEG-g-MWCNTs were characterized by Fourier transform infrared spectra and also thermo-gravimetric analysis, which verified that PEG chains were grafted onto the surface of the MWCNTs. The scanning electron micrographs of the fiber surface revealed a highly porous structure which greatly increases the surface area for PEG-g-MWCNTs sol-gel coating. This fiber demonstrated many inherent advantages, the main being the strong anchoring of the coating to the fused silica resulting from chemical bonding with the silanol groups on the fused-silica fiber surface. The new PEG-g-MWCNTs sol-gel fiber is simple to prepare, robust, with high thermal stability and long lifetime, up to 200 extractions. Important parameters influencing the extraction efficiency such as desorption temperature and time, extraction temperature, extraction time, stirring speed and salt effect were investigated and optimized. Under the optimal conditions, the method detection limits (S/N=3) were in the range of 0.6-3 pg mL(-1) and the limits of quantification (S/N=10) between 2 and 10 pg mL(-1). The relative standard deviations (RSDs) for one fiber (repeatability) (n=5) were obtained from 4.40 up to 5.75% and between fibers or batch to batch (n=3) (reproducibility) in the range of 4.31-6.55%. The developed method was successfully applied to real water samples while the relative recovery percentages obtained for the spiked water samples at 20 pg mL(-1) were from 90.21 to 101.90%.  相似文献   
58.
A stir bar sorptive extraction (SBSE) technique was developed by the use of polypyrrole (PPy) sorbent, electropolymerized on the surface of a rod, as a possible alternative to solid‐phase microextraction (SPME). Liquid desorption was subsequently employed to transfer the extracted analytes into the injection port of a gas chromatography‐mass spectrometry (GC‐MS). The PPy sorbent including polypyrrole‐dodecyl sulfate (PPy‐DS) was deposited on the surface of a stainless steel rod from the corresponding aqueous electrolyte by applying a constant deposition potential. The developed method was applied to the trace level extraction of BTEX (benzene, toluene, ethylbenzene, o,p‐xylene) from aqueous sample. Optimization of influential experimental conditions including the voltage of power supply, the time of PPy electrodeposition, the extraction temperature, the ionic strength and the extraction time were also investigated. The detection limits of the method under optimized conditions were in the range of 0.01–0.1 ng·mL?1. The relative standard deviations (RSD) at a concentration level of 1 ng·mL?1 were obtained between 8% and 13% (n=6). The calibration curves of BTEX showed linearity in the range of 0.03 to 600 ng·mL?1. The proposed method was successfully applied to the extraction of some selected BTEX from river water samples and the relative recoveries were higher than 90% for all the analytes.  相似文献   
59.
A new SPME fiber based on mixture of zeolite and silicon carbide in PVC matrix was made and its application for sampling of BTEX compounds from headspace of water and soil samples was studied. After optimization of conditions, the proposed fiber was used for determination of BTEX in real samples obtained from rivers and soils of gasoline reservoirs surroundings. The method has good linearity (0.991‐0.999) over wide concentration range. Detection limits of the method are in the range of 0.66–1.66 μg L? and 0.01–0.12 μg kg? for water and soil samples, respectively.  相似文献   
60.
《Analytical letters》2012,45(14):2393-2405
Abstract

The use of headspace solid‐phase microextraction (HS‐SPME) to determine benzene, toluene, ethylbenzene, and xylenes (BTEX) in foundry molding sand, specifically a “green sand” (clay‐bonded sand) was investigated. The BTEX extraction was conducted using a 75 µM Carboxen‐polydimethylsiloxane (CAR‐PDMS) fiber, which was suspended above 10 g of sample. The SPME fiber was desorbed in a gas chromatograph injector port (280°C for 1 min) and the analytes were characterized by mass spectrometry. The effects of extraction time and temperature, water content, and clay and bituminous coal percentage on HS‐SPME of BTEX were investigated. Because green sands contain bentonite clay and carbonaceous material such as crushed bituminous coal, a matrix effect was observed. The detection limits for BTEX were determined to be ≤0.18 ng g?1 of green sand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号