首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1699篇
  免费   398篇
  国内免费   289篇
化学   1015篇
晶体学   5篇
力学   162篇
综合类   8篇
数学   542篇
物理学   654篇
  2024年   10篇
  2023年   51篇
  2022年   99篇
  2021年   103篇
  2020年   147篇
  2019年   117篇
  2018年   98篇
  2017年   85篇
  2016年   108篇
  2015年   105篇
  2014年   135篇
  2013年   144篇
  2012年   120篇
  2011年   108篇
  2010年   69篇
  2009年   80篇
  2008年   88篇
  2007年   70篇
  2006年   90篇
  2005年   53篇
  2004年   66篇
  2003年   35篇
  2002年   54篇
  2001年   56篇
  2000年   29篇
  1999年   33篇
  1998年   39篇
  1997年   32篇
  1996年   29篇
  1995年   19篇
  1994年   12篇
  1993年   14篇
  1992年   15篇
  1991年   6篇
  1990年   11篇
  1989年   12篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有2386条查询结果,搜索用时 15 毫秒
81.
利用三态模型和含时波包法, 研究了K2分子在强飞秒泵浦-探测激光场中泵浦/探测场强、波长对光电子能谱Autler-Townes(AT)分裂的影响.通过分别改变两激光场的场强或者波长预测AT峰移和间距,并且首次量化了AT分裂的峰移和间距.光电子能谱在共振时显示为对称双峰,失谐时为非对称双峰。AT分裂间距随泵浦场强增大而增大,但不因探测场强改变而改变.  相似文献   
82.
We consider the numerical approximation of the weak solutions of the two‐layer shallow‐water equations. The model under consideration is made of two usual one‐layer shallow‐water model coupled by nonconservative products. Because of the nonconservative products of the system, which couple both one‐layer shallow‐water subsystems, the usual numerical methods have to consider the full model. Of course, uncoupled numerical techniques, just involving finite volume schemes for the basic shallow‐water equations, are very attractive since they are very easy to implement and they are costless. Recently, a stable layer splitting technique was introduced [Bouchut and Morales de Luna, M2AN Math Model Numer Anal 42 (2008), 683–698]. In the same spirit, we exhibit new splitting technique, which is proved to be well balanced and non‐negative preserving. The main benefit issuing from the here derived uncoupled method is the ability to correctly approximate the solution of very severe benchmarks. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1396–1423, 2015  相似文献   
83.
We consider the locally one‐dimensional backward Euler splitting method to solve numerically the Hull and White problem for pricing European options with stochastic volatility in the presence of a mixed derivative term. We prove the first‐order convergence of the time‐splitting. The parabolic equation degenerates on the boundary x = 0 and we apply a fitted finite volume scheme to the equation to resolve the degeneracy and derive the fully discrete problem as we also investigate the discrete maximum principle. Numerical experiments illustrate the efficiency of our difference scheme. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 822–846, 2015  相似文献   
84.
Hydrogen generated through the photochemical cleavage of water using renewable solar energy is considered to be an environmentally friendly chemical fuel of the future, which neither results in air pollution nor leads to the emission of greenhouse gases. The photocatalytic materials for water cleavage are required to perform at least two fundamental functions: light harvesting of the maximal possible part of the solar energy spectrum and a catalytic function for efficient water decomposition into oxygen and hydrogen. Photocatalytic systems based on colloidal semiconductor nanocrystals offer a number of advantages in comparison with photoelectrochemical cells based on bulk electrodes: (i) a broad range of material types are available; (ii) higher efficiencies are expected due to short distance charge transport; (iii) large surface areas are beneficial for the catalytic processes; (iv) flexibility in fabrication and design which also allows for tuning of the electronic and optical properties by employing quantum confinement effects. The presence of co-catalysts on colloidal semiconductors is an important part of the overall design of the photocatalytic colloidal systems necessary to maximize the water splitting efficiency. This review article discusses the rational choice of colloidal nanoheterostructured materials based on light-harvesting II–VI semiconductor nanocrystals combined with a variety of metal and/or non-metal co-catalysts, with optimized light harvesting, charge separation, and photocatalytic functions.  相似文献   
85.
The effect of flame annealing on the water‐splitting properties of Sn decorated hematite (α‐Fe2O3) nanoflakes has been investigated. It is shown that flame annealing can yield a considerable enhancement in the maximum photocurrent under AM 1.5 (100 mW cm?2) conditions compared to classic furnace annealing treatments. Optimizing the annealing time (10 s at 1000 °C) leads to a photocurrent of 1.1 mA cm?2 at 1.23 V (vs. RHE) with a maximum value 1.6 mA cm?2 at 1.6 V (vs. RHE) in 1 M KOH. The improvement in photocurrent can be attributed to the fast direct heating that maintains the nanoscale morphology, leads to optimized Sn decoration, and minimizes detrimental substrate effects.  相似文献   
86.
Photocatalytic conversion of CO2 to reduction products, such as CO, HCOOH, HCHO, CH3OH, and CH4, is one of the most attractive propositions for producing green energy by artificial photosynthesis. Herein, we found that Ga2O3 photocatalysts exhibit high conversion of CO2. Doping of Zn species into Ga2O3 suppresses the H2 evolution derived from overall water splitting and, consequently, Zn‐doped, Ag‐modified Ga2O3 exhibits higher selectivity toward CO evolution than bare, Ag‐modified Ga2O3. We observed stoichiometric amounts of evolved O2 together with CO. Mass spectrometry clarified that the carbon source of the evolved CO is not the residual carbon species on the photocatalyst surface, but the CO2 introduced in the gas phase. Doping of the photocatalyst with Zn is expected to ease the adsorption of CO2 on the catalyst surface.  相似文献   
87.
Ni‐doped CdS nanowires were synthesized by a simple one‐step method. X‐ray diffraction, X‐ray photoelectron spectroscopy, and photoluminescence spectroscopy confirmed that light Ni doping can form shallow surface states due to the presence of substitutional Ni ions, and heavy Ni doping can form deep surface states due to the presence of interstitial Ni ions. Surface photovoltage spectroscopy and transient photovoltage measurements revealed that the shallow surface states can prolong the lifetime of the photogenerated charge carriers, whereas the deep surface states lead to recombination of the photogenerated charge carriers. The relationship between different surface states and the photocatalytic performance of CdS nanocrystals are discussed. The enhanced density of shallow surface states due to light Ni doping significantly promotes photocatalytic H2 production.  相似文献   
88.
Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever‐increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh‐based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3]2+. Based on these results, we could successfully photosynthesize a model chiral compound (L ‐glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors.  相似文献   
89.
Extremely slow and extremely fast new water oxidation catalysts based on the Ru–bda (bda=2,2′‐bipyridine‐6,6′‐dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s?1, respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π‐stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts.  相似文献   
90.
Iron is the cheapest and one of the most abundant transition metals. Natural [FeFe]‐hydrogenases exhibit remarkably high activity in hydrogen evolution, but they suffer from high oxygen sensitivity and difficulty in scale‐up. Herein, an FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its β‐FeOOH NA/Ti precursor through a low‐temperature phosphidation reaction. When applied as self‐supported 3D hydrogen evolution cathode, the FeP NA/Ti electrode shows exceptionally high catalytic activity and good durability, and it only requires overpotentials of 55 and 127 mV to afford current densities of 10 and 100 mA cm2, respectively. The excellent electrocatalytic performance is promising for applications as non‐noble‐metal HER catalyst with a high performance–price ratio in electrochemical water splitting for large‐scale hydrogen fuel production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号