首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   11篇
化学   241篇
物理学   4篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   24篇
  2011年   10篇
  2010年   10篇
  2009年   13篇
  2008年   14篇
  2007年   13篇
  2006年   11篇
  2005年   16篇
  2004年   20篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   8篇
  1994年   3篇
  1993年   1篇
  1991年   22篇
  1988年   1篇
排序方式: 共有245条查询结果,搜索用时 10 毫秒
41.
The determination of organophosphorus and carbamate pesticides was carried out using an amperometric transducer based on a robust, polishable and easily mechinable biocomposite. The biocomposite material contains graphite powder, a non-conducting epoxy resin and acetylcholinesterase. The enzyme retains its bioactivity in the rigid epoxy-graphite matric. Measurements were carried out with acetylhiocholine as a substrate. Thiocholine produced by enzymatic hydrolysis was oxidized electrochemically at 70 mV (vs. Ag/AgCl in pH 7.0 buffered solution with 0.1 M phosphate and 0.1 m KCl). The decrease rate of substrate steady-state current after the addition of pesticide was used for evaluation. The method of construction allows for the repetitive use of the electrode. Simple polishing procedures are used to regenerate the bioactive transducer surface.  相似文献   
42.
Carbon fiber microelectrodes, able to detect catecholamine release from single cells, have significantly contributed to our present understanding of the mechanism of secretory neurotransmission. In spite of their obvious advantages, there are only a few amperometric sensors (characterized by appropriate size, sensitivity, and selectivity) able to measure the release of other (not easily oxidizable) neurotransmitters at cellular level. The present work describes the fabrication and characterization of an ultramicrobiosensor for the selective detection of glutamate. The developed sensor has a size of 2.5–15 μm in diameter, a sensitivity of 0.62 mA mM?1 cm?2, and a detection limit of 5 μM. The excellent selectivity of the sensor (achieved using electrodeposition of Ru, Rh, and poly(m‐phenylenediamine)) makes it a promising candidate for monitoring glutamate release at single cell level.  相似文献   
43.
In this work, two well known polymers, carboxymethyl dextran and poly(ethyleneglycol), are used for easily producing a platform for electrochemical affinity assays, avoiding nonspecific adsorption of proteins. In this way, modified electrode surfaces able to bind a recognition agent are constructed through simple and reliable reactions.  相似文献   
44.
Electrodeposition of Pt-Pb nanoparticles (PtPbNPs) to multi-walled carbon nanotubes (MWCNTs) resulted in a stable PtPbNP/MWCNT nanocomposite with high electrocatalytic activity to glucose oxidation in either neutral or alkaline medium. More importantly, the nanocomposite electrode with a slight modification exhibited high sensitivity, high selectivity, and low detection limit in amperometric glucose sensing at physiological neutral pH (poised at a negative potential). At +0.30 V in neutral solution, the nanocomposite electrode exhibited linearity up to 11 mM of glucose with a sensitivity of 17.8 μA cm−2 mM−1 and a detection limit of 1.8 μM (S/N = 3). Electroactive ascorbic acid (0.1 mM), uric acid (0.1 mM) and fructose (0.3 mM) invoked only 23%, 14% and 9%, respectively, of the current response obtained for 3 mM glucose. At −0.15 V in neutral solution, the electrode responded linearly to glucose up to 5 mM with a detection limit of 0.16 mM (S/N = 3) and detection sensitivity of ∼18 μA cm−2 mM−1. At this negative potential, ascorbic acid, uric acid, and fructose were not electroactive, therefore, not interfering with glucose sensing. Modification of the nanocomposite electrode with Nafion coating followed by electrodeposition of a second layer of PtPbNPs on the Nafion coated PtPbNP/MWCNT nanocomposite produced a glucose sensor (poised at −0.15 V) with a lower detection limit (7.0 μM at S/N = 3) and comparable sensitivity, selectivity and linearity compared to the PtPbNP/MWCNT nanocomposite. The Nafion coating lowered the detection limit by reducing the background noise, while the second layer of PtPbNPs restored the sensitivity to the level before Nafion coating.  相似文献   
45.
A novel sensor for the determination of nitrite anion () was fabricated by electrodeposition of toluidine blue. The sensor exhibited good catalytic activity toward the electrochemical oxidation of nitrite. Amperometry was carried out to determine the concentration of . A linear response in the range from 1.0×10−7 to 1.52×10−5 M with a substantially low detection limit of 5×10−8 M (S/N=3) was obtained. The proposed sensor had a feature of high sensitivity of 4.7×105 μA M−1 cm−2. The possible interference from several common ions was tested. This sensor was applied to the amperometric determination of nitrite in food samples, and the results were consistent with those obtained with the standard spectrophotometric procedure.  相似文献   
46.
Salimi A  Hallaj R  Ghadermazi M 《Talanta》2005,65(4):888-894
The carbon ceramic electrode prepared with sol-gel technique is modified by a thin film of chlorogenic acid (CGA). By immersing the carbon ceramic electrode in aqueous solution of chlorogenic acid at less than 2 s a thin film of chlorogenic acid adsorbed strongly and irreversibly on the surface of electrode. The cyclic voltammetry of the resulting modified CCE prepared at optimum conditions shows a well-defined stable reversible redox couple due to hydroquinone/quinone system in both acidic and basic solutions. The modified electrode showed excellent electrocatalytic activity toward NADH oxidation and it also showed a high analytical performance for amperometric detection of NADH. The catalytic rate constant of the modified carbon ceramic electrode for the oxidation of NADH is determined by cyclic voltammetry measurement. Under the optimised conditions the calibration curve is linear in the concentration range 1-120 μm. The detection limit (S/N = 3) and sensitivity are 0.2 μM and 25 nA μM−1.The results of six successive measurement-regeneration cycles show relative standard deviations of 2.5% for electrolyte solution containing 1 mM NADH, indicating that the electrode renewal gives a good reproducible and antifouling surface. The advantages of this amperometric detector are: high sensitivity, excellent catalytic activity, short response time t < 2 s, remarkable long-term stability, simplicity of preparation at short time and good reproducibility.  相似文献   
47.
Self-assembled monolayer gold electrode for surfactant analysis   总被引:2,自引:0,他引:2  
A gold electrode coated with a self-assembled monolayer of octane-thiol (SAM/Au) has been used as an amperometric detector for the determination of surfactants. This detector operated in the presence of a high percentage of organic solvent and was adapted to an HPLC System. At the SAM/Au, the electrochemical response of an electroactive tracer (potassium ferricyanide) was completely inhibited, but, in the presence of a cationic surfactant, the electrochemical reduction was progressively restored. In flow injection analysis, using the SAM/Au in an amperometric flow-through detector polarised at 0.0 V vs Ag/AgCl, a linear response (i=f{[surfactant]}) was observed for cationic surfactants e.g. cetylpyridinium chloride in the concentration range 2 × 10−6–1 × 10−3 M. The electrochemical data along with the determination of the ion pair stoichiometry between the redox tracer and the surfactant suggest an electrochemical response related to ion pair formation and governed by electron transfer by tunneling effect. Received: 28 January 1997 / Accepted: 7 March 1997  相似文献   
48.
This review compares various types of (bio)electronic tongues. The design and principles of potentiometric and voltammetric electronic tongues are discussed together with applications in food and environmental analysis. Different approaches towards bioelectronic tongue are presented. Several methods for evaluation and interpretation of the measured data are described. Finally, the potential of such devices for analysis of wine is discussed.  相似文献   
49.
A novel technique based on dynamic electrochemistry for the detection of fluoride ions was developed. It is based on its strong complexation with ferric ion. Formed fluoroferric complex is cathodically inactive at the potential of the reduction of free ferric aquo ion. The voltammetric and amperometric response of platinum comb-shaped interdigitated microelectrode array is decreased after fluoride addition. This decrease serves for the quantification of fluoride ions added to the solution. The detection limit of 4.5 × 10−5 mol dm−3 was achieved when one of the segments of interdigitated microelectrode array (IDA) was used as an indicating electrode. The detection limit is about one order of magnitude lower than in the case of conventional platinum macroelectrode. In comparison with ISE electrodes this method is faster and also avoiding large error resulting from the antilogarithmization of ISE Nerstian response. The method was applied to the analysis of toothpaste.  相似文献   
50.
In this article, we have summarized the recent important results related to the electrochemical detection of vesicular exocytosis by amperometry with microelectrodes over the past three years. In this fascinating scientific field that began 40 years ago, the historical carbon fiber amperometry method still continues to be used to address biological questions by the pioneered groups of the field but also by other research groups thus showing this has become an indispensable routine technique for analyzing exocytosis. Furthermore, new methodologies (coupling with fluorescence, use of nanoelectrodes, microarrays) have blossomed and demonstrated how new analytical methods could be built to push back the limits of the initial technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号