首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1978篇
  免费   508篇
  国内免费   205篇
化学   573篇
晶体学   96篇
力学   104篇
综合类   26篇
数学   447篇
物理学   1445篇
  2024年   4篇
  2023年   35篇
  2022年   56篇
  2021年   60篇
  2020年   65篇
  2019年   65篇
  2018年   85篇
  2017年   99篇
  2016年   114篇
  2015年   75篇
  2014年   136篇
  2013年   213篇
  2012年   173篇
  2011年   184篇
  2010年   132篇
  2009年   155篇
  2008年   158篇
  2007年   125篇
  2006年   113篇
  2005年   94篇
  2004年   86篇
  2003年   74篇
  2002年   65篇
  2001年   60篇
  2000年   50篇
  1999年   30篇
  1998年   32篇
  1997年   33篇
  1996年   18篇
  1995年   14篇
  1994年   11篇
  1993年   10篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   12篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   6篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有2691条查询结果,搜索用时 15 毫秒
61.

Isoregic conjugated polymers composed of thiophene and dialkoxybenzene units were designed to harvest incident light in the mid‐visible energy range (band gap of 2.1 eV). Poly(1,4‐bis(2‐thienyl)‐2,5‐diheptoxybenzene) (PBTB(OC7H15)2) and poly(1,4‐bis(2‐thienyl)‐2,5‐didodecyloxybenzene) (PBTB(OC12H25)2) have shown significant photovoltaic performance as an electron donor when used in tandem with the electron acceptor [6, 6]‐phenyl C61‐butyric acid methyl ester (PCBM) in bulk hetero‐junction photovoltaic devices. Photovoltaic devices incorporating PBTB(OC7H15)2 and PCBM have shown AM1.5 efficiencies of ~0.6% with a short circuit current density of 2.5 mA/cm2, an open circuit voltage of 0.74 V, and a fill factor of 0.32. Incident Photon‐to‐Current Efficiency (IPCE) of the device was found to be ca. 16% at 410 nm. In order to examine the relationship between the molecular structure of the polymers and their electronic energy levels, and to correlate this with photovoltaic performance, optoelectronic and electrochemical results are discussed in relation to the I‐V characteristics of the devices. Additionally, a computer‐aided simulation is used to gain further insight into the effect of polymer structure on the energetic relationships in the bulk heterojunction devices.  相似文献   
62.
A series of novel low band gap polymers containing conjugated side chains with 4,7‐dithien‐5‐yl‐2,1,3‐benzodiathiazole and different electron‐withdrawing end groups of aldehyde ( PT‐DTBTCHO ), 2‐ethylhexyl cyanoacetate ( PT‐DTBTCN ), 1,3‐diethyl‐2‐thiobarbituric acid ( PT‐DTBTDT ), and electron‐donating end group of 2‐methylthiophene ( PT‐DTBTMT ) have been designed and synthesized. All polymers exhibit good solubility in common organic solvents, film‐forming ability, and thermal stability. These conjugated polymers show the broad ultraviolet‐visible absorption and the narrow optical band gaps in the range of 1.65–1.90 eV. Through changing the end group of conjugated side chains, the photophysical properties and energy levels of the polymers were tuned effectively. Bulk heterojunction solar cells based on the blend of these polymers and (6,6)‐phenyl‐C61‐butyric acid methyl ester (PC61BM) reached the best power conversion efficiency (PCE) of 2.72%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
63.
One dimensional nanostructures of cerium doped dysprosium phosphate (DyPO4:Ce3+) were synthesized via hydrothermal route in the presence of different surfactants [sodium dodecyl sulfate (SDS), dodecyl sulfosuccinate (DSS), polyvinyl pyrollidone (PVP)] and solvent [ethylene glycol and water]. The prepared nanostructures were characterized by Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-VIS-NIR absorption spectrophotometer and photoluminescence (PL) studies. The PXRD and FTIR results indicate purity, good crystallinity and effective doping of Ce3+ in nanostructures. SEM and TEM micrographs display nanorods, nanowires and nanobundles like morphology of DyPO4:Ce3+. Energy-dispersive X-ray spectra (EDS) of DyPO4:Ce3+nanostructures confirm the presence of dopant. UV-VIS-NIR absorption spectra of prepared compounds are used to calculate band gap and explore their optical properties. Luminescent properties of DyPO4:Ce3+ was studied by using PL emission spectra. The effect of additives and solvents on the uniformity, morphology and optical properties of the nanostructures were studied in detail.  相似文献   
64.
Delafossite CuFeO2 oxide was synthesized by a hydrothermal technique using Cu2O and FeOOH as precursors with the addition of fused NaOH as mineralizer. The amount of rhombohedral and hexagonal delafossite phase formed depends on the synthesis time lapses between 2 and 5 days and on the NaOH concentration. The compounds obtained were analyzed with Raman Spectroscopy, X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) in order to obtain their morphological and structural properties. Optical behavior was studied by UV–vis Spectroscopy and gas adsorption measured with a Quartz-Crystal Microbalance (QCM). Our results show that this type of hydrothermal synthesis is capable of recreating the delafossite-type structure of copper-iron oxide and produces a high yield of material with the right stoichiometry. The highest uptake of carbon dioxide is observed on the sample with the highest ratio between rhombohedral and hexagonal delafossite phase.  相似文献   
65.
66.
The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) ( 6 ) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C14) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO–LUMO gap (HLG) and ultimately a C−H borylation of the anthryl unit. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV/Vis absorption spectrum (THF, λonset=788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B−B and C1−H bonds of 8 were cleaved to give the cyclic 1,9-diborylanthracene 9 .  相似文献   
67.
A direct band gap 2D corrugated layer lead chloride hybrid, [(CH3)4N]4Pb3Cl10 ( 1 ), shows analogous topology to the {Mg3F104−} layer in Cs4Mg3F10, and with the (CH3)4N+ cations locating in the inorganic layer voids and between the interlayers. Two reversible structural phase transitions occur in 1 at 225/210 K and 328/325 K upon heating/cooling, respectively. On going from the low- to intermediate-temperature phase, the space group changes from P21/c to Cmca, and the crystallographic axis perpendicular to the layers is doubled with the order–disorder transformation of (CH3)4N + cations between the interlayers. The intermediate- and high-temperature phases are isomorphic with similar cell parameters and packing structure; their main difference concerns the disorder degree of the (CH3)4N + cations between the interlayers. The two-step structural phase transitions lead to dielectric anomalies around the corresponding Tc. Interestingly, 1 shows multiband emission, originating from the recombination of exciton and emission of defects. Moreover, 1 exhibits divergent thermochromic luminescent features around the Tc on the intermediate to low temperature transition.  相似文献   
68.
69.
In this work, we performed first principles calculations based on self-consistent charge density functional tight-binding to investigate different mechanisms of band gap tuning of silicene. We optimized structures of silicene sheet, functionalized silicene with H, CH3 and F groups and nanoribbons with the edge of zigzag and armchair. Then we calculated electronic properties of silicene, functionalized silicene under uniaxial elastic strain, silicene nanoribbons and silicene under external electrical fields. It is found that the bond length and buckling value for relaxed silicene is agreeable with experimental and other theoretical values. Our results show that the band gap opens by functionalization of silicene. Also, we found that the direct band gap at K point for silicene changed to the direct band gap at the gamma point. Also, the functionalized silicene band gap decrease with increasing of the strain. For all sizes of the zigzag silicene nanoribbons, the band gap is near zero, while an oscillating decay occurs for the band gap of the armchair nanoribbons with increasing the nanoribbons width. At finally, it can be seen that the external electric field can open the band gap of silicene. We found that by increasing the electric field magnitude the band gap increases.  相似文献   
70.
ABSTRACT

Blue phase liquid crystals are soft 3D photonic crystals in which the liquid crystal molecules self-assemble to form a cubic structure with lattice spacing of a few hundred nanometers resulting in selective reflection of colours in the visible spectrum. The corresponding wavelength or the ‘photonic band gap’ can be tuned using various external stimuli such as thermal, electric, magnetic and optical fields. Here, we report efficient tuning of photonic band gap by utilising the combination of electric and optical fields in a blue phase liquid crystalline system. The studies indicate that the chirality of the medium has a direct bearing on the direction of the wavelength shift and the extent of the photonic band gap tunability. More importantly, the synergistic effect of the two fields helps in reversible tuning of the band gap.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号