首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   339篇
  国内免费   126篇
化学   505篇
晶体学   74篇
力学   7篇
综合类   7篇
物理学   641篇
  2024年   2篇
  2023年   12篇
  2022年   25篇
  2021年   23篇
  2020年   60篇
  2019年   39篇
  2018年   46篇
  2017年   60篇
  2016年   82篇
  2015年   57篇
  2014年   90篇
  2013年   94篇
  2012年   108篇
  2011年   111篇
  2010年   79篇
  2009年   75篇
  2008年   45篇
  2007年   65篇
  2006年   55篇
  2005年   28篇
  2004年   18篇
  2003年   18篇
  2002年   17篇
  2001年   9篇
  2000年   6篇
  1999年   9篇
  1996年   1篇
排序方式: 共有1234条查询结果,搜索用时 265 毫秒
91.
Nanocrystalline aluminum nitride (AlN) thin films were deposited on two types of metallic seed layers on silicon substrates, (111) textured Pt and (110) Mo, by reactive DC magnetron sputtering at low temperature (200 °C). Both textured films of Pt and Mo promote nucleation, thereby improving the crystallinity and epitaxial growth condition for AlN thin films. The deposited films were examined by X‐ray diffraction, scanning electron microscopy and atomic force microscopy techniques. The results indicated that the preferred orientation of crystallites greatly depends upon the kinetic energy of the sputtered species (target power) and seed layers used. Furthermore, AlN thin films with c‐axis perpendicular to the substrate grew on both types of metal electrodes at all power levels larger than 100 W. By comparing the structural properties and compressive stresses at perfect c‐axis orientation conditions, it is evident that AlN films deposited on (110) oriented Mo substrates exhibited superior properties as compared with Pt/Ti seed layers. Furthermore, less values of compressive stresses (?3 GPa) as compared with Pt/Ti substrates (?7.08 GPa) make Mo preferentially better candidate to be employed in the field of suspended Micro/Nano ‐ electromechanical systems (MEMS/NEMS) for piezoelectric devices. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
92.
We report a new type of molecular sensor using a Au nanowire (NW)–Au nanoparticles (NPs) conjugated system. The Au NW–NPs structure is fabricated by the self‐assembly of biotinylated Au NPs on a biotinylated Au NW through avidin; this creates hot spots between NW and NPs that strongly enhance the Raman signal. The number of the Au NPs attached to the NW is reproducibly proportional to the concentration of the avidin, and is also proportional to the measured surface‐enhanced Raman scattering (SERS) signals. Since this well‐defined NW–NPs conjugated sensor is only a few micrometer long, we expect that development of multiplex nanobiosensor of a few tens micrometer size would become feasible by combining individually modified multiple Au NWs together on one substrate.  相似文献   
93.
Hui Li  Yongheng Zhu  Qun Xiang 《Talanta》2010,82(2):458-70
SnO2 nanowires with an average 0.6 μm in length and about 25 nm in diameter were prepared by a hydrothermal method. The sensors were fabricated using SnO2 nanowires assembled with Pd nanocrystals. The sensing properties of the sensors such as selectivity, response-recovery time and stability were tested at 290 °C. After assembling Pd nanocrystals onto the surface of SnO2 nanowires, the gas sensing properties of the sensors toward H2S were improved. The sensors based on Pd nanoparticle@SnO2 nanowires exhibit high stability owing to stable single crystal structure. The mechanism of promoting sensing properties with Pd nanoparticles is discussed.  相似文献   
94.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   
95.
In this study, UV photodetectors based on a network of aluminium-doped zinc oxide (AZO) nanowires were manufactured at a low cost; for this purpose, a fast and simple fabrication process that involved dropping nanowires dispersion solution was employed instead of the conventional e-beam lithography process that is used to manufacture single nanowire–based UV photodetectors. It was demonstrated that nanowire network–based UV photodetectors provide a much faster UV photoresponse than conventional single nanowire–based UV photodetectors. The fast UV photoresponse of the fabricated UV photodetector can be attributed to the fact that the potential barriers formed in the nanowire network junctions effectively block the flow of electrons during the process of photocurrent decay. Furthermore, the UV photoresponse under illumination by a 254 nm UV source was studied as a function of the annealing temperature of the AZO nanowires network at a bias of 5 V. The fabricated UV photodetector showed the fastest response of 2 s to UV illumination in air when the sample was annealed in air for 1 h at 300 °C.  相似文献   
96.
Modulation doped AlGaAs/GaAs core–shell nanowire structures were grown by molecular beam epitaxy. A Si delta‐doping was introduced in the AlGaAs shell around the {110} facets of the GaAs core. The wires are typically highly resistive at low temperatures. However, they show a pronounced persistent photoconductivity effect indicating activation of free carriers from the delta‐doped shell to the GaAs core. The n‐type character of the channel is demonstrated by applying a back‐gate voltage. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
97.
A general, system-independent, formulation of the parabolic Schrödinger–Poisson equation is presented for a charged hard wall in the limit of complete screening by the ground state. It is solved numerically using iteration and asymptotic boundary conditions. The solution gives a simple relation between the band bending and sheet charge density at an interface. Approximative analytical expressions for the potential profile and wave function are developed based on properties of the exact solution. Specific tests of the validity of the assumptions leading to the general solution are made. The assumption of complete screening by the ground state is found be a limitation; however, the general solution provides a fair approximate account of the potential profile when the bulk is doped. The general solution is further used in a simple model for the potential profile of an AlN/GaN barrier structure. The result compares well with the solution of the full Schrödinger–Poisson equation.  相似文献   
98.
李志杰  田鸣  贺连龙 《物理学报》2011,60(9):98101-098101
借助二次模板法成功的合成了AlN纳米线宏观阵列,并进行了表征.主要研究CVD法制备有一定取向,直径均匀的AlN纳米线宏观阵列的过程.通过气相沉积法和利用PS球自组装模板制备了金属纳米颗粒模板;再以模板上的金属纳米颗粒作为催化剂,利用化学气相沉积在模板上合成AlN纳米线宏观阵列.借助SEM,TEM观察所得样品,AlN纳米线阵列面积约为0.3 mm×0.2 mm,直径和长度分布均匀,平均直径约为41 nm,平均长度为1.8 μm左右,分散密度和覆盖率大的六角结构AlN纳米线宏观阵列.得到了可控制备AlN纳米线 关键词: AlN纳米线阵列 模板法 CVD法 SEM  相似文献   
99.
袁娣  罗华锋  黄多辉  王藩侯 《物理学报》2011,60(7):77101-077101
基于密度泛函理论(density functional theory),采用第一性原理平面波超软赝势法,研究了纤锌矿AlN,Zn掺杂和Zn,O共掺杂AlN的晶体结构、能带、电子态密度、差分电荷分布及电荷布居数.计算结果表明:Zn,O共掺杂方法中引入激活施主O原子,能使受主能级向低能方向移动,形成了浅受主能级.同时,受主能带变宽、非局域化特征明显、从而提高了Zn原子的掺杂浓度和系统的稳定性.Zn,O共掺杂更有利于获得p型AlN. 关键词: 第一性原理 AlN 电子结构 p型共掺杂  相似文献   
100.
2D planar field emission devices based on individual ZnO nanowires were achieved on Si/SiO2 substrate via a standard e-beam lithography method. The anode, cathode and ZnO nanowires were on the same substrate; so the electron field emission is changed to 2D. Using e-beam lithography, the emitter (cathode) to anode distance could be precisely controlled. Real time, in situ observation of the planar field emission was realized in a scanning electron microscope. For individual ZnO nanowires, an onset voltage of 200 V was obtained at 1 nA. This innovative approach provides a viable and practical methodology to directly implement into the integrated field emission electrical devices for achieving “on-chip” fabrication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号