首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4344篇
  免费   704篇
  国内免费   543篇
化学   3994篇
晶体学   102篇
力学   93篇
综合类   15篇
数学   32篇
物理学   1355篇
  2024年   2篇
  2023年   43篇
  2022年   94篇
  2021年   99篇
  2020年   161篇
  2019年   141篇
  2018年   132篇
  2017年   170篇
  2016年   234篇
  2015年   246篇
  2014年   309篇
  2013年   450篇
  2012年   407篇
  2011年   474篇
  2010年   351篇
  2009年   438篇
  2008年   389篇
  2007年   368篇
  2006年   313篇
  2005年   213篇
  2004年   174篇
  2003年   175篇
  2002年   79篇
  2001年   72篇
  2000年   26篇
  1999年   12篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1990年   1篇
  1979年   1篇
排序方式: 共有5591条查询结果,搜索用时 24 毫秒
31.
Multiwalled carbon nanotubes were modified by carboxy groups. Four independent methods for the determination of the degree of functionalization of the surface were proposed: 13C NMR spectroscopy, thermogravimetry, titrimetry, and fluorimetry. The first two methods show the total content of carboxy groups in the sample, and the latter two methods give information about the content of the surface groups only. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 291–295, February, 2008.  相似文献   
32.
Transparent carbon nanotube coatings   总被引:1,自引:0,他引:1  
Thin networks of carbon nanotubes (CNTs) are sprayed onto glass or plastic substrates in order to obtain conductive transparent coatings. Transparency and conductivity at room temperature of different CNT material are evaluated. CNT coatings maintain their properties under mechanical stress, even after folding the substrate. At a transparency of 90% for visible light we observe a surface resistivity of 1 kΩ/sq which is already a promising value for various applications.  相似文献   
33.
This work is to make carbon nanotubes dispersible in both water and organic solvents without oxidation and cutting nanotube threads. Polystyrene‐singlewall carbon nanotube (PS‐SWNT) composites were prepared with three different methods: miniemulsion polymerization, conventional emulsion polymerization, and mixing SWNT with PS latex. The two factors, crosslinking and surface coverage of PS are important factors for the mechanical and electrical properties, including dispersion states of SWNT in various solvents. The PS‐SWNT composite prepared via a conventional emulsion polymerization showed SWNT bundles entirely covered with PS, whereas the PS‐SWNT composite prepared via a miniemulsion polymerization showed SWNT partially covered with crosslinked PS nanoparticles. The method of mixing SWNTs with PS latex did not show the well dispersed state of carbon nanotubes because PS was not crosslinked and was dissolved in a solvent, and nanotubes separated from PS precipitated. So the PS nanoparticle‐SWNT composite had lower electrical resistance, and higher mechanical strength than the other composites made by the latter two methods. As the amount of SWNT increases, the bare surface area of SWNT increases and the electrical conductivity increases in the composite made by the miniemulsion polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 573–584, 2006  相似文献   
34.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   
35.
This study describes the preparation of polypyrrole (PPy)/multiwalled carbon nanotube (MWNT) composites by in situ chemical oxidative polymerization. Various ratios of MWNTs, which served as hard templates, were first dispersed in aqueous solutions with the surfactant cetyltrimethylammonium bromide to form micelle/MWNT templates and overcome the difficulty of MWNTs dispersing into insoluble solutions of pyrrole monomer, and PPy was then synthesized via in situ chemical oxidative polymerization on the surface of the templates. Raman spectroscopy, Fourier transform infrared (FTIR), field‐emission scanning electron microscopy (FESEM), and high‐resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the fabricated composites. Structural analysis using FESEM and HRTEM showed that the PPy/MWNT composites were core (MWNT)–shell (PPy) tubular structures. Raman and FTIR spectra of the composites were almost identical to those of PPy, supporting the idea that MWNTs served as the core in the formation of a coaxial nanostructure for the composites. The conductivities of these PPy/MWNT composites were about 150% higher than those of PPy without MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1413–1418, 2006  相似文献   
36.
Carbon Nanotubes in Analytical Sciences   总被引:1,自引:0,他引:1  
  相似文献   
37.
溶剂热还原合成Cr2O3纳米管(英)   总被引:2,自引:0,他引:2  
Cr2O3 nanotubes with diameters of 80 nm and lengths of 550 nm were synthesized in a solvothermal reduction system at 180 ℃. The acetyl acetone (AcAc) and ethylene glycol (EG) were used as the chelate agent and the reductant respectively in the system. An intermediate compound-Cr(Ⅲ)(C5H7O2)3 was formed to force Cr2O3to crystallize along one direction.  相似文献   
38.
杨琪  邓意达  胡文彬 《无机化学学报》2007,23(12):2049-2053
采用聚乙烯醇对碳纳米管表面进行改性,通过化学沉淀法将Al(OH)3均匀沉积在碳纳米管表面,然后在氮气气氛下于500 ℃煅烧2 h,制备出氧化铝/碳纳米管复合材料。采用TEM、TG、DTA、XRD、IR、氮吸附脱附(比表面积及孔结构分析)等对氧化铝/碳纳米管复合材料进行表征,结果表明:未经聚乙烯醇改性的碳纳米管,氧化铝与碳纳米管相互分离;经聚乙烯醇改性的碳纳米管,氧化铝与碳纳米管结合良好。经聚乙烯醇改性的碳纳米管表面均匀覆盖一层聚乙烯醇膜,通过聚乙烯醇的吸附作用, Al(OH)3沉积在碳纳米管表面形成一层连续的覆盖层。  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号