首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90684篇
  免费   9597篇
  国内免费   6396篇
化学   46875篇
晶体学   949篇
力学   5245篇
综合类   685篇
数学   16227篇
物理学   36696篇
  2024年   861篇
  2023年   1234篇
  2022年   2501篇
  2021年   2752篇
  2020年   3233篇
  2019年   2973篇
  2018年   2375篇
  2017年   2419篇
  2016年   3342篇
  2015年   2886篇
  2014年   3721篇
  2013年   6244篇
  2012年   4519篇
  2011年   4536篇
  2010年   3689篇
  2009年   5027篇
  2008年   5358篇
  2007年   5949篇
  2006年   5217篇
  2005年   4192篇
  2004年   3675篇
  2003年   3762篇
  2002年   3811篇
  2001年   2976篇
  2000年   2886篇
  1999年   2382篇
  1998年   2338篇
  1997年   1511篇
  1996年   1385篇
  1995年   1101篇
  1994年   1089篇
  1993年   819篇
  1992年   870篇
  1991年   601篇
  1990年   553篇
  1989年   453篇
  1988年   386篇
  1987年   363篇
  1986年   347篇
  1985年   301篇
  1984年   308篇
  1983年   169篇
  1982年   233篇
  1981年   235篇
  1980年   150篇
  1979年   181篇
  1978年   182篇
  1977年   168篇
  1976年   127篇
  1973年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The frequency or dispersion relation for the least‐squares mixed formulation of the shallow‐water equations is analysed. We consider the use of different approximation spaces corresponding to co‐located and staggered meshes, respectively. The study includes the effect of Coriolis, and the dispersion properties are compared analytically and graphically with those of the mixed Galerkin formulation. Numerical solutions of a test problem to simulate slow Rossby modes illustrate the theoretical results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
52.
Atom transfer radical polymerization (ATRP) and single electron‐transfer living radical polymerization (SET‐LRP) both utilize copper complexes of various oxidation states with N‐ligands to perform their respective activation and deactivation steps. Herein, we utilize DFT (B3YLP) methods to determine the preferred ligand‐binding geometries for Cu/N‐ligand complexes related to ATRP and SET‐LRP. We find that those ligands capable of achieving tetrahedral complexes with CuI and trigonal bipyramidal with axial halide complexes with [CuIIX]+ have higher energies of stabilization. We were able to correlate calculated preferential stabilization of [CuIIX]+ with those ligands that perform best in SET‐LRP. A crude calculation of energy of disproportionation revealed that the same preferential binding of [CuIIX]+ results in increased propensity for disproportionation. Finally, by examining the relative energies of the basic steps of ATRP and SET‐LRP, we were able to rationalize the transition from the ATRP mechanism to the SET‐LRP mechanism as we transition from typical nonpolar ATRP solvents to polar SET‐LRP solvents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4950–4964, 2007  相似文献   
53.
We consider fields which take random values over several decades. Starting from physical examples, we postulate that scale is not an absolute quantity. We then establish the equivalence between two existing approaches based on scale symmetry arguments as general as possible. This yields a classification of log-infinitely divisible laws, possibly universal. The physical significance of the parameters entering in the classification is discussed. Received: 7 November 1997 / Received in final form: 26 March 1998 / Accepted: 30 March 1998  相似文献   
54.
    
The solvent extraction of cobalt(II), nickel(II) and copper(II) using 2,4-pent-dione (Hacac) and 4-phenyl-2, 4-but-dione (Hbzac) is carried out by varying the reagent concentration and pH of the aqueous phase. Each of these metals is quantitatively separated (≈ 98%) from their binary mixtures with monovalent (Ag), divalent (Mn, Zn, Cd, Hg, Mg, Sn, Pb) and trivalent (Cr, Fe) metals. The extraction constants are calculated from the metal distribution data using linear regression analysis. The extracted species is MA2 in each case. A most significant result is separation of copper(II) from iron(III) which otherwise interferes when extracted from the acidic medium.  相似文献   
55.
In this work we present a first-order partial differential equationwhich defines the topology of single ‘atomic entities’in multiatomic systems. Such an equation, obtained by R. F.W. Bader, is here analysed and discussed from a general mathematicalpoint of view; a method is then proposed for defining the initialor boundary condition. With this contribution we would liketo promote and stimulate a more detailed analysis which goesbeyond practical purposes and basic mathematical analysis inorder to have a deeper understanding of the theory behind theequation and its consequences for practical applications.  相似文献   
56.
The radical terpolymerization of 8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene with vinylidene fluoride (VDF) and perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride is presented. Changing the feed compositions of these three fluorinated comonomers enabled us to obtain different random‐type poly[vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride‐ter‐8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene] terpolymers containing various sulfonyl fluoride and brominated side groups. Yields higher than 70% were reached in all cases. The hydrolysis of the sulfonyl fluoride group into the ? SO3Li function in the presence of lithium carbonate was quantitatively achieved without the content of VDF being affected, and so dehydrofluorination of the VDF base unit was avoided. These original terpolymers were then crosslinked via dangling bromine atoms in the presence of a peroxide/triallyl isocyanurate system, which produced films insoluble in organic solvents such as acetone and dimethylformamide (which totally dissolved uncured terpolymers). The acidification of ? SO3Li into the ? SO3H function enabled protonic membranes to be obtained. The thermal stabilities of the crosslinked materials were higher than those of the uncured terpolymers, and their electrochemical performances were investigated. According to the contents of the sulfonic acid side functions, the ion‐exchange capacities ranged from 0.6 to 1.5 mequiv of H+/g, whereas the water uptake and conductivities ranged from 5–26% (±11%) and from 0.5 to 6.0 mS/cm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4566–4578, 2006  相似文献   
57.
Manganites of the LA1−x Ca x MnO3 family show a variety of new and poorly understood electronic, magnetic and structural effects. Here we outline a new approach recently proposed by us, where we argue that due to strong Jahn-Teller (JT) coupling with phonons the twofold degeneratee g states at the Mn sites dynamically reorganize themselves into localised, JT polaronsl with exponentially small inter-site hopping, and band-like, nonpolaronic statesb, leading to anew 2-band model for manganites which includes strong Coulomb and Hund’s couplings. We also discuss some results from a dynamical mean-field theory treatment of the model which explains quantitatively a wide variety of experimental results, including insulator-metal transitions and CMR, in terms of the influence of physical conditions on the relative energies and occupation of thel andb states. We argue that this microscopic coexistence of the two types of electronic states, and their relative occupation and spatial correlation is the key to manganite physics. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   
58.
59.
This study focuses on the preparation, characterization, and optical properties of new bis(3,4‐diphenylethynylphenyl)phenylamine. This is the first nitrogen‐containing bis‐ortho‐diynylarene (BODA) monomer having a nitrogen atom as the spacer group. BODA monomers are usually prepared from common bisphenols, thereby providing great synthetic versatility and the opportunity to develop a wide array of novel polyarylene thermosets by varying the aromatic spacer group. The new bis(3,4‐bisphenylethynylphenyl)phenylamine was synthesized in five steps. This compound emits an intense blue color (λ = 438 nm) upon irradiation by UV light and may be suitable for use as an emitting layer in electroluminescent devices. Bis‐(3,4‐bisphenylethynylphenyl)phenylamine and its polymer have photoluminescence quantum yields 34 and 38%, respectively, and long excited‐state lifetimes of 3.2 and 3.6 ns, respectively. The structure of the monomer and its polymer were characterized using spectroscopic techniques including Ultraviolet–visible Spectrophotometer, Photoluminescence Spectrophotometer, Fourier Transform infrared spectroscopy, and Gel Permeation Chromatography. The polymerizations were studied by Differential Scanning Calorimeter. The amount of weight loss and the thermostability of the nitrogen‐containing polymer were determined from thermogravimetric analysis. The electrical conductivity of neat HCl‐doped BODA‐derived polymer film was measured according to the standard four‐point probe technique. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6988–6996, 2006  相似文献   
60.
A double hydrophilic block copolymer composed of poly(acrylic acid) (PAA) and poly(4‐vinyl pyridine) (P4VP) was obtained through hydrolysis of diblock copolymer of poly(tert‐butyl acrylate) (PtBA) and P4VP synthesized using atom transfer radical polymerization. Water‐soluble micelles with PAA core and P4VP corona were observed at low (acidic) pH, while micelles with P4VP core and PAA corona were formed at high (basic) pH. Two metalloporphyrins, zinc tetraphenylporphyrin (ZnTPP) and cobalt tetraphenylporphyrin (CoTPP), were used as model compounds to investigate the encapsulation of hydrophobic molecules by both types of micelles. UV–vis spectroscopic measurements indicate that micelles with P4VP core are able to entrap more ZnTPP and CoTPP as a result of the axial coordination between the transition metals and the pyridine groups. The study found that metalloporphyrins encapsulated by the micelles with PAA core could be released on pH increase, while those entrapped by the micelles with P4VP core could be released on pH decrease. This behavior originates from the two‐way pH change‐induced disruption of PAA‐b‐P4VP micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1734–1744, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号