It has been a long‐sought goal in cluster science to discover stable atomic clusters as building blocks for cluster‐assembled nanomaterials, as exemplified by the fullerenes and their subsequent bulk syntheses. 1 , 2 Clusters have also been considered as models to understand bulk properties, providing a bridge between molecular and solid‐state chemistry. 3 Because of its electron deficiency, boron is an interesting element with unusual polymorphism. While bulk boron is known to be dominated by the three‐dimensional (3D) B12 icosahedral motifs, 4 new forms of elemental boron are continuing to be discovered. 5 In contrast to the 3D cages commonly found in bulk boron, in the gas phase two‐dimensional (2D) boron clusters are prevalent. 6 – 8 The unusual planar boron clusters have been suggested as potential new bulking blocks or ligands in chemistry. 6a Herein we report a joint experimental and theoretical study on the [Ta2B6]− and [Ta2B6] clusters. We found that the most stable structures of both the neutral and anion are D6h bipyramidal, similar to the recently discovered MB6M structural motif in the Ti7Rh4Ir2B8 solid compound. 9 相似文献
Radical cyclizations of 3,7-dimethylenebicyclo[3.3.1]nonane with CF3I, n-C3F7I, ICF2COOEt and ICF2PO(OEt)2 selectively led to corresponding 3,7-noradamantanes, which were used for preparation of various polyfluoroalkyl substituted noradamantyl amines and carboxylates. DFT computations revealed that chemoselectivity of the radical cyclizations is realized due to the high electrophilicity of the CF3 radical, as well as due to efficient trapping of intermediate noradamantylmethyl radicals by perfluoroiodoalkane. 相似文献
The Raman (3500-30 cm−1) spectra of liquid and solid and the infrared (3500-40 cm−1) spectra of gaseous and solid 3-methyl-3-butenenitrile, CH2C(CH3)CH2CN, have been recorded. Both cis and gauche conformers have been identified in the fluid phases but only the cis form remains in the solid. Variable temperature (−55 to −100 °C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 163±16 cm−1 (1.20±0.19 kJ mol−1), with the cis conformer the more stable rotamer. It is estimated that there is 48±2% of the gauche conformer present at 25°C. A complete vibrational assignment is proposed for the cis conformer based on infrared band contours, relative intensities, depolarization ratios and group frequencies. Several of the fundamentals for the gauche conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been obtained for both rotamers by ab initio calculations employing the 6-31G(d), 6-311G(d,p), 6-311+G(d,p) and 6-311+G(2d,2p) basis sets at the levels of restricted Hartree-Fock (HF) and/or Møller-Plesset perturbation theory to the second order (MP2). Only with the 6-311G(2d,2p) and 6-311G(2df,2pd) basis sets with or without diffuse functions is the cis conformer predicted to be more stable than the gauche form. The potential energy terms for the conformational interchange have been obtained at the MP2(full)/6-311+G(2d,2p) level, and compared to those obtained from the experimental data. The results are discussed and compared to the corresponding quantities obtained for some similar molecules. 相似文献
Four ground state triplet silylenes are found among 30 possible silylenic XHSi3 structures (X = H, F, Cl and Br), at seven ab initio and DFT levels including: B3LYP/6-311++G∗∗, HF/6-311++G∗∗, MP3/6-311G∗, MP2/6-311+G∗∗, MP4(SDTQ)/6-311++G∗∗, QCISD(T)/6-311++G∗∗ and CCSD(T)/6-311++G∗∗. The latter six methods indicate that the triplet states of 3-flouro-1,2,3-trisilapropadienylidene, 1-chloro-1,2,3-trisilapropargylene and 3-chloro-1,2,3-trisilapropargylene are energy minima. These triplets appear more stable than their corresponding singlet states which cannot even exist for showing negative force constants. Also, triplet state of 1-flouro-1,2,3-trisilapropargylene is possibly accessible for being an energy minimum, since its corresponding singlet state is not a real isomer. Some discrepancies are observed between energetic and/or structural results of DFT vs. ab initio data. 相似文献
The gas phase infrared spectrum of 3-aminoacetophenone (3AAP) was measured in the range 5000-500cm(-1) and with a resolution of 0.5cm(-1). The Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectra of 3AAP were recorded in the solid phase. Geometry optimizations were done without any constraint and several thermodynamic parameters were calculated for the minimum energy conformer at ab initio and density functional theory (DFT) levels invoking 6-311G(2df 2p) basis set and the results are compared with the experimental values. Harmonic-vibrational wavenumber was also calculated for the minimum energy conformer at ab initio and DFT levels using 6-31G(d,p) basis set and the results are compared with related molecules. With the help of specific scaling procedures, the observed vibrational wavenumbers in gas phase, FT-IR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range, the error obtained was in general very low. The appropriate theoretical spectrogram for the FT-IR spectra of the title molecule is also constructed. 相似文献
In this contribution, ab initio methods have been used to study the open-shell CO+–He van der Waals (vdW) complex in both the ground and the first Π excited electronic state. Calculations were performed at the UCCSD(T) level of theory in the framework of the supermolecule approach using the cc-pVTZ basis set complemented with a set of standard bond functions in the middle of the vdW bond. Calculations predict a most-stable equilibrium conformation with β e=45°, Re=2.85 Å and De=275 cm?1 for the ground CO+(X2Σ)–He(1S) state and β e=90°, Re=2.70 Å and De=218 cm?1 for the excited CO +(A2Π)–He(1S) state. The dipole moment μ and independent components of the field polarizability α of the CO +–He vdW complex have been studied at the calculated equilibrium geometry of these states. The vertical excitation energies from the ground CO+(X2Σ)–He(1S) to the excited CO+(A2Π)–He (1S) electronic state and corresponding shifts in the fluorescent spectrum with respect to the isolated CO+ molecule are also presented 相似文献
Raman and FTIR spectra for 2,3,4- and 2,3,6-tri-fluoro-benzonitriles have been recorded in the regions 50–4000 cm−1 and 400–4000 cm−1, respectively. Measurement of depolarization ratios for the Raman lines has also been made. Optimized geometrical parameters, charge distributions and vibrational wavenumbers were calculated using ab initio quantum chemical method. Normal coordinate analysis has also been carried out to help assign the fundamentals of these molecules. Each vibration has been assigned using observed wavenumbers in the IR and Raman spectra and their relative intensities, depolarization ratios of the Raman lines, the calculated frequencies, vector displacements and potential energy distributions (PEDs). 相似文献
The infrared spectra of 3-pentyn-2-ol, CH3CCCH(OH)CH3, have been recorded as a vapour and liquid at ambient temperature, as a solid at 78 K in the 4000–50 cm−1 range and isolated in an argon matrix at ca. 5 K. Infrared spectra of the solid phase at 78 K were obtained before and after annealing to temperatures of 120 and 130 K. The IR spectra of the solid were quite similar to that of the liquid.
Raman spectra of the liquid were recorded at room temperature and at various temperatures between 295 and 153 K. Spectra of an amorphous and annealed solid were recorded at 78 K. In the variable temperature Raman spectra, some bands changed in relative intensity and were interpreted in terms of conformational equilibria between the three possible conformers. Complete assignments were made for all the bands of the most stable conformer in which OH is oriented anti to C1(aMe). From various bands assigned to a second conformer in which OH is oriented anti to Hgem(aH), the conformational enthalpy differences was found to be between 0.4 and 0.8 kJ mol−1. The highest energy conformer with OH anti to C3(aC) was not detected.
Quantum-chemical calculations have been carried out at the MP2 and B3LYP levels with a variety of basis sets. Except for small basis set calculations for which the aH conformer had slightly lower energy, all the calculations revealed that aMe was the low energy conformer. The B3LYP/cc-pVTZ calculations suggested the aMe conformer as more stable by 0.8 and 8.3 kJ mol−1 relative to aH an aC, respectively. Vibrational wavenumbers and infrared and Raman band intensities for two of the three conformers are reported from B3LYP/cc-pVTZ calculations. 相似文献