首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   16篇
  国内免费   1篇
化学   2篇
晶体学   4篇
数学   1篇
物理学   153篇
  2013年   1篇
  2011年   1篇
  2010年   3篇
  2009年   30篇
  2008年   28篇
  2007年   26篇
  2006年   26篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   10篇
  2001年   7篇
  2000年   5篇
  1999年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有160条查询结果,搜索用时 936 毫秒
71.
Methyl radicals (CH3) and atomic hydrogen (H) are dominant radicals in low-temperature plasmas from methane. The surface reactions of these radicals are believed to be key steps leading to deposition of amorphous hydrogenated carbon (a-C:H) films or polycrystalline diamond in these discharges. The underlying growth mechanism is studied, by exposing an a-C:H film to quantified radical beams of H and CH3. The deposition or etching rate is monitored via ellipsometry and the variation of the stoichiometry is monitored via isotope labeling and infrared spectroscopy. It was shown recently that, at 320 K, methyl radicals have a sticking coefficient of 10-4 on a-C:H films, which rises to 10-2 if an additional flux of atomic hydrogen is present. This represents a synergistic growth mechanism between H and CH3. From the interpretation of the infrared data, a reaction scheme for this type of film growth is developed: atomic hydrogen creates dangling bonds by abstraction of bonded hydrogen within a surface layer corresponding to the range of H in a-C:H films. These dangling bonds serve at the physical surface as adsorption sites for incoming methyl radicals and beneath the surface as radicalic centers for polymerization reactions leading to carbon–carbon bonds and to the formation of a dense a-C:H film. Received: 18 July 2000 / Accepted: 12 December 2000 / Published online: 3 April 2001  相似文献   
72.
Thin films obtained by cluster deposition have attracted strong attention both as a new manufacturing technique to realize high-density magnetic recording media and to create systems with unique magnetic properties. Because the film’s features are influenced by the cluster properties during the flight path, the relevant physical scale to be studied is as large as centimeters. In this paper, a new model of cluster growth processes based on a combination of the Direct Simulation Monte Carlo (DSMC) method and the cluster growth model is introduced to examine the effects of experimental conditions on cluster growth by an adiabatic expansion process. From the macroscopic viewpoint, we simulate the behavior of clusters and inert gas in the flight path under different experimental conditions. The internal energy of the cluster, which consists of rotational and vibrational energies, is limited by the binding energy which depends on the cluster size. These internal and binding energies are used as criteria of the cluster growth. The binding energy is estimated by surface and volume terms. Several types of size distribution of generated clusters under various conditions are obtained by the present model. The results of the present numerical simulations reveal that the size distribution is strongly related to the experimental conditions and can be controlled. Received: 23 January 2001 / Accepted: 3 May 2001 / Published online: 30 August 2001  相似文献   
73.
Ultrafast light-induced insulator-metal phase transitions (PT) in VO2 thin films was studied with use of a pump-probe technique. The theoretical and experimental study of PT kinetics shows that the PT could be realized via an intermediate state. The relaxation processes after optical pumping are dependent on pump energy. The excitonic controlled model for such type of PT is proposed. The main channel for the ultrafast light-induced PT is the resonant transition between excited states of correlated vibronic Wannier-Mott excitons (WME) in insulator phase and the unoccupied excited states in metallic phase. During this process an equilibrium local distortion occurred. According to the proposed model the experimental observation of the drastic temperature- and pump power- dependent relaxation processes could be interpreted.  相似文献   
74.
On the basis of numerical minimization of total energy in magnetic triaxial ferromagnetic films with a surface of a (1 1 0)-type, we investigated two-dimensional structures of domain walls within a rigorous micromagnetic approach that takes into account all the main interactions including the dipole–dipole one. Novel two-vortex and three-vortex domain wall structures are established to exist. The profiles of domain wall structures and their stability regions are studied.  相似文献   
75.
Growth of interfaces during vapor deposition is analyzed on a discrete lattice. It leads to finding distribution of local heights, measurable for any lattice model. Invariance in the change of this distribution in time is used to determine the cross over effects in various models. The analysis is applied to the discrete linear growth equation and Kardar-Parisi-Zhang (KPZ) equation. A new model is devised that shows early convergence to the KPZ dynamics. Various known conservative and non conservative models are tested on a one dimensional substrate by comparing the growth results with the exact KPZ and linear growth equation results. The comparison helps in establishing the condition that determines the presence of cross over effect for the given model. The new model is used in (2+1) dimensions to predict close to the true value of roughness constant for KPZ equation.  相似文献   
76.
Nanosize zinc ferrite particles have been prepared for the first time using electrodeposition. Zinc and iron are deposited on the cathode from a common bath containing the salts of zinc and iron. The deposited materials were forced to undergo electrochemical oxidation in a strong alkaline solution (1 M KOH) to convert them into oxides. Crystallization in ZnFe2O4 structure was obtained by heating the deposited material at appropriate temperature. X-ray diffraction pattern confirmed that the procedure leads to the formation of pure phase of ZnFe2O4. The magnetization value for the smallest size ZnFe2O4 is much smaller than that for the ZnFe2O4 made by most of the other methods although it shows a nice hysteresis shape. The magnetization shows very little variation with size in the range studied.  相似文献   
77.
Catalytic ruthenium dioxide films were deposited by spin-coating process on ferroelectric films mainly constituted of SrBi2Ta2O9 (SBT) and Ba2NaNb5O15 (BNN) phases. After thermal treatment under air, these ferroelectric-catalytic systems were characterized by X-ray diffraction and scanning electron microscopy (SEM). SEM images showed that RuO2 film morphology depended on substrate nature. A study of CH4 conversion into CO2 and H2O was carried out using these catalytic-ferroelectric multilayers: the conversion was analyzed from Fourier transform infrared (FTIR) spectroscopy, at various temperatures. Improved catalytic properties were observed for RuO2 films deposited on BNN oxide layer.  相似文献   
78.
Recently Garel, Monthus and Orland [Europhys. Lett. 55, 132 (2001)] considered a model of DNA denaturation in which excluded volume effects within each strand are neglected, while mutual avoidance is included. Using an approximate scheme they found a first order denaturation. We show that a first order transition for this model follows from exact results for the statistics of two mutually avoiding random walks, whose reunion exponent is c > 2, both in two and three dimensions. Analytical estimates of c due to the interactions with other denaturated loops, as well as numerical calculations, indicate that the transition is even sharper than in models where excluded volume effects are fully incorporated. The probability distribution of distances between homologous base pairs decays as a power law at the transition. Received 8 July 2002 / Received in final form 25 July 2002 Published online 17 September 2002  相似文献   
79.
We review the methods and use of random quantum states with particular emphasis on recent theoretical developments and applications in various fields. The guiding principle of the review is the idea that random quantum states can be understood as classical probability distributions in the Hilbert space of the associated quantum system. We show how this central concept connects questions of physical interest that cover different fields such as quantum statistical physics, quantum chaos, mesoscopic systems of both non-interacting and interacting particles, including superconducting and spin–orbit phenomena, and stochastic Schrödinger equations describing open quantum systems.  相似文献   
80.
In several studies of actin-based cellular motility, the barbed ends of actin filaments have been observed to be attached to moving obstacles. Filament growth in the presence of such filament-obstacle interactions is studied via Brownian dynamics simulations of a three-dimensional energy-based model. We find that with a binding energy greater than 24k B T and a highly directional force field, a single actin filament is able to push a small obstacle for over a second at a speed of half of the free filament elongation rate. These results are consistent with experimental observations of plastic beads in cell extracts. Calculations of an external force acting on a single-filament-pushed obstacle show that for typical in vitro free-actin concentrations, a 3pN pulling force maximizes the obstacle speed, while a 4pN pushing force almost stops the obstacle. Extension of the model to treat beads propelled by many filaments suggests that most of the propulsive force could be generated by attached filaments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号