首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   8篇
  国内免费   7篇
化学   98篇
力学   9篇
综合类   1篇
数学   16篇
物理学   48篇
  2023年   4篇
  2022年   9篇
  2021年   6篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   7篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   11篇
  2011年   10篇
  2010年   14篇
  2009年   7篇
  2008年   14篇
  2007年   15篇
  2006年   7篇
  2005年   9篇
  2004年   10篇
  2003年   1篇
  2002年   4篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
51.
Balabin RM  Smirnov SV 《Talanta》2011,85(1):562-568
Melamine (2,4,6-triamino-1,3,5-triazine) is a nitrogen-rich chemical implicated in the pet and human food recalls and in the global food safety scares involving milk products. Due to the serious health concerns associated with melamine consumption and the extensive scope of affected products, rapid and sensitive methods to detect melamine's presence are essential. We propose the use of spectroscopy data-produced by near-infrared (near-IR/NIR) and mid-infrared (mid-IR/MIR) spectroscopies, in particular—for melamine detection in complex dairy matrixes. None of the up-to-date reported IR-based methods for melamine detection has unambiguously shown its wide applicability to different dairy products as well as limit of detection (LOD) below 1 ppm on independent sample set. It was found that infrared spectroscopy is an effective tool to detect melamine in dairy products, such as infant formula, milk powder, or liquid milk. ALOD below 1 ppm (0.76 ± 0.11 ppm) can be reached if a correct spectrum preprocessing (pretreatment) technique and a correct multivariate (MDA) algorithm—partial least squares regression (PLS), polynomial PLS (Poly-PLS), artificial neural network (ANN), support vector regression (SVR), or least squares support vector machine (LS-SVM)—are used for spectrum analysis. The relationship between MIR/NIR spectrum of milk products and melamine content is nonlinear. Thus, nonlinear regression methods are needed to correctly predict the triazine-derivative content of milk products. It can be concluded that mid- and near-infrared spectroscopy can be regarded as a quick, sensitive, robust, and low-cost method for liquid milk, infant formula, and milk powder analysis.  相似文献   
52.
本文采用人工神经网络BP算法对深基坑开挖工程中的参数进行辨识,将某些现场实测值作为网络输入,土层物性参数作为网络的输出, 限元计算取得学习样本来训练网络,从而地深基坑开挖工程中的参数进行辨识的目的,同时,本文提出了将极大似然估计引入BP学习算法中,可以考虑学习样本和网络输入(现场产测值)的误差,可以求得所辨识参数的可靠度,本文还对动态调整BP学习算法的学习速度因子,冲量系数以加快网络学习速度的算法进行了研究,本文算例表明本文算法训练速率可比传统BP算法快10倍以上。  相似文献   
53.
研究了应用人工神经网络进行粉末药品的非破坏定量分析,使用扑热息痛粉末药品的近红外漫反射光谱数据建立人工神经网络模型,预测未知样品,讨论了影响网络的各参数,采用逼近度作为网络新的评价标准,由于人工神经网络好的非线性的多变量校正特点,预测结果是准确的。  相似文献   
54.
It has been proved that near-infrared (NIR) spectroscopy is a powerful analytical tool in the pharmaceutical industries1, especially in the quantitative analysis of the pharmaceu- tical tests during the last decades2-4. Currently, the quantitative analyti…  相似文献   
55.
《印度化学会志》2023,100(1):100852
Multi-linear regression analysis (MLR), radial basis function (RBF) and multilayer perceptron (MLP) of artificial neural network (ANN) with five inputs (temperature, concentrations of HCl, TOA, Cyanex 921, Zr (IV) and percentage of extraction (%E)) as only output were employed for the construction of models. It was observed that ANN (RBF and MLP) performed better as compared to the MLR model. Based on the models proposed, the extraction of Zr(IV) could be predicted under variable experimental conditions of concentrations of HCl, TOA (Tri-n-octylamine), Cyanex 921 (Tri-n-octyl phosphineoxide), Zr(IV) and temperature. The nonlinear and complex relation between the percentage of extraction and operating variables have been determined using two and three layered feed forward neural network with back-propagation of error learning algorithm. Uncertainties in data have been determined in terms of statistical parameters such as root mean-squared error and R-squared values to check the efficiency of the model for prediction.  相似文献   
56.
Two artificial neural network models (forward and inverse) are developed to describe ethylene/1‐olefin copolymerization with a catalyst having two site types using training and testing datasets obtained from a polymerization kinetic model. The forward model is applied to predict the molecular weight and chemical composition distributions of the polymer from a set of polymerization conditions, such as ethylene concentration, 1‐olefin concentration, cocatalyst concentration, hydrogen concentration, and polymerization temperature. The results of the forward model agree well with those from the kinetic model. The inverse model is applied to determine the polymerization conditions to produce polymers with desired microstructures. Although the inverse model generates multiple solutions for the general case, unique solutions are obtained when one of the three key process parameters (ethylene concentration, 1‐olefin concentration, and polymerization temperature) is kept constant. The proposed model can be used as an efficient tool to design materials from a set of polymerization conditions.

  相似文献   

57.
《印度化学会志》2021,98(3):100042
The effects of three structural parameters on flow field and power consumption of in-line high shear mixer (HSM) were investigated by large eddy simulation (LES). In addition, an artificial neural network (ANN) is used to predict the relationship between the structural parameters and the power consumption, and the effect of dimensionless structural parameters on the power number constant Poz and k1 is studied. The results show that the stator tooth thickness and the tooth tip-base distance have a slight effect on the flow field, and the shear gap width is a key parameter affecting the flow field. As the stator teeth thickness, the tooth tip-base distance and the shearing gap width increases, the power number Po decreases. There is a linear relationship between the constant k1 and the dimensionless structural parameters. With the increase of the dimensionless parameter Ts/Ds-o of the stator tooth thickness, the dimensionless parameter St/H of the tooth tip-base distance, and the dimensionless parameter Sg/DR-o of the shear gap width, the constant k1 decreases. With the increase of the parameter St/H, Sg/DR-o and Ts/Ds-o, the constant Poz first increases and then decreases. There is a linear relationship between the constant Poz and the parameter Ts/h. With the increase of the parameter Ts/h, the constant Poz increases.  相似文献   
58.
The objective of this study was to investigate the extraction efficiency of 9 natural deep eutectic solvents (NDES) with the assistance of ultrasound for phenolic acids, flavonols, and flavan-3-ols in muscadine grape (Carlos) skins and seeds in comparison to 75% ethanol. Artificial neural networking (ANN) was applied to optimize NDES water content, ultrasonication time, solid-to-solvent ratio, and extraction temperature to achieve the highest extraction yields for ellagic acid, catechin and epicatechin. A newly formulated NDES (#1) consists of choline chloride: levulinic acid: ethylene glycol 1:1:2 and 20% water extracted the highest amount of ellagic acid in the skin at 22.1 mg/g. This yield was 1.73-fold of that by 75% ethanol. A modified NDES (#3) consisting of choline chloride: proline: malic acid 1:1:1 and 30% water extracted the highest amount of catechin (0.61 mg/g) and epicatechin (0.89 mg/g) in the skin, and 2.77 mg/g and 0.37 mg/g in the seed, respectively. The optimal yield of ellagic acid in the skin using NDES #1 was 25.3 mg/g (observed) and 25.3 mg/g (predicted). The optimal yield of (catechin + epicatechin) in seed using NDES #3 was 9.8 mg/g (observed) and 9.6 mg/g (predicted). This study showed the high extraction efficiency of selected NDES for polyphenols under optimized conditions.  相似文献   
59.
In this paper a commercial electronic tongue (αAstree, Alpha M.O.S.) was applied for botanical classification and physicochemical characterization of honey samples. The electronic tongue was comprised of seven potentiometric sensors coupled with an Ag/AgCl reference electrode. Botanical classification was performed by PCA, CCA and ANN modeling on 12 samples of acacia, chestnut and honeydew honey. The physicochemical characterization of honey was obtained by ANN modeling and the parameters included were electrical conductivity, acidity, water content, invert sugar and total sugar. The initial reference values for the physicochemical parameters observed were determined by traditional methods. Botanical classification of honey samples obtained by ANN was 100% accurate while the highest correlation between observed and predicted values was obtained for electrical conductivity (0.999), followed by acidity (0.997), water content (0.994), invert sugar content (0.988) and total sugar content (0.979).All developed ANN models for rapid honey characterization and botanical classification performed excellently showing the potential of the electronic tongue as a tool in rapid honey analysis and characterization. The advantage of using such a technique is a simple sample preparation procedure, there are no chemicals involved and there are no additional costs except the initial measurements required for ANN model development.  相似文献   
60.
郭颖 《大学物理》2012,31(8):25-28
分析光杠杆法测量金属线胀系数实验的误差及误差产生原因,发现温度变化与刻度间隔并非线性变化.对比传统误差分析方法,利用神经网络非线性映射能力,对实验数据进行误差补偿分析,均方根误差达到0.000 01,消除非线性影响,误差降低.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号