首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7009篇
  免费   86篇
  国内免费   3篇
化学   25篇
力学   39篇
综合类   1篇
数学   6691篇
物理学   342篇
  2023年   3篇
  2022年   4篇
  2021年   3篇
  2020年   4篇
  2019年   61篇
  2018年   80篇
  2017年   37篇
  2016年   27篇
  2015年   35篇
  2014年   99篇
  2013年   331篇
  2012年   167篇
  2011年   354篇
  2010年   391篇
  2009年   521篇
  2008年   517篇
  2007年   463篇
  2006年   247篇
  2005年   174篇
  2004年   100篇
  2003年   125篇
  2002年   149篇
  2001年   169篇
  2000年   188篇
  1999年   197篇
  1998年   245篇
  1997年   202篇
  1996年   137篇
  1995年   136篇
  1994年   159篇
  1993年   148篇
  1992年   171篇
  1991年   153篇
  1990年   159篇
  1989年   167篇
  1988年   110篇
  1987年   96篇
  1986年   120篇
  1985年   94篇
  1984年   113篇
  1983年   41篇
  1982年   90篇
  1981年   53篇
  1980年   89篇
  1979年   62篇
  1978年   68篇
  1977年   24篇
  1976年   7篇
  1973年   3篇
  1971年   2篇
排序方式: 共有7098条查询结果,搜索用时 15 毫秒
161.
Stability and tuning characteristics of continuous-wave optical parametric oscillators (CW OPOs) are affected by various thermal effects arising from optical absorption in nonlinear crystals. In this paper, we present an experimental study of such effects in a singly resonant CW OPO. The OPO operates in the 3-μm mid-infrared region and it is based on a MgO-doped periodically poled lithium niobate crystal. We focus our study on two thermally induced phenomena that have been recently reported to exist in singly resonant CW OPOs: optical bi-stability and thermal self-locking. Thermal self-locking effect, which is known to alter the stability and tuning properties of doubly and triply resonant CW OPOs, is shown to be also of importance in singly resonant OPOs. We report the stability and tuning characteristics of a thermally loaded OPO and discuss a simple temperature-tuning method that can be used to scan the OPO idler frequency continuously over several THz.  相似文献   
162.
An injection-seeded optical parametric generator (OPG), coupled with three pulsed dye amplification (PDA) stages, was shown to produce tunable, narrow linewidth laser radiation. The OPG was composed of a pair of beta barium borate (β-BBO) crystals and pumped by the third harmonic (355 nm) output of a seeded Nd:YAG laser. The OPG was injection-seeded at the idler wavelength (824 nm) using an external cavity diode laser (ECDL) with a mode-hop-free tuning range of 20 GHz. Using the PDA stages, the OPG output signal (624 nm) was amplified to 19 mJ/pulse, while maintaining a spectral linewidth of approximately 160 MHz at full-width-half-maximum (FWHM) which was within a factor of 2 of the Fourier limit. A system of lenses and apertures was used to minimize amplified spontaneous emission (ASE) in the PDA stages. Using the OPG/PDA system, two-photon laser-induced fluorescence measurements of atomic oxygen were performed by sum-frequency-mixing the 624-nm beam with the third harmonic output of the seeded Nd:YAG laser to generate approximately 1 mJ/pulse of ultraviolet radiation near 226 nm. Voigt line shapes were found to be in good agreement with oxygen atom spectra in atmospheric-pressure, laminar, counter-flow flames; the magnitude of Doppler and collisional broadening was approximately the same. The measured O-atom concentration profile was found to compare well with that calculated using an opposed-flow flame code.  相似文献   
163.
We demonstrate that for a given pump source, there is an optimum pump threshold to achieve the maximum single-frequency output power in singly resonant optical parametric oscillators. Therefore, cavity losses and parametric amplification have to be adjusted. In particular, continuous-wave output powers of 1.5 W were achieved with a 2.5 cm lithium niobate crystal in comparison with 0.5 W by a 5 cm long crystal within the same cavity design. This counter-intuitive result of weaker amplification leading to larger powers can be explained using a model from L.B. Kreuzer (Proc. Joint Conf. Lasers and Opt.-Elect., p. 52, 1969). Kreuzer also states that single-mode operation is possible only up to pump powers which are 4.6 times the threshold value. Additionally, implementing an outcoupling mirror to increase losses, single-frequency waves with powers of 3 W at 3.2 μm and 7 W at 1.5 μm could be generated simultaneously.  相似文献   
164.
In this article, we present studies on therahertz (THz) wave generation and frequency up-conversion in a periodically poled lithium niobate (PPLN) crystal. A frequency at 1.37 THz was generated as femtosecond pump pulses passed through a PPLN crystal with grating periods of 30 μm. The pump-induced THz wave interacts with the probe wave in the crystal by frequency mixing. The frequency up-converted THz wave is easily detected by a normal photodiode. A new scheme for generation and detection of THz wave in one non-linear crystal was proposed.  相似文献   
165.
We investigate the spatial behaviour of the quantum-noise-reduction spectrum of the vacuum state emitted by a degenerate optical parametric oscillator below threshold. In view of possible experimental implementations, we consider a mode-degenerate resonator and two matching lenses and show that, for the realistic case of a finite-width pump, significant level of squeezing can be observed in a very small region of the beam. Received 25 September 2002 Published online 11 February 2003  相似文献   
166.
Doppler-broadened atomic and molecular spectra were observed with a one octave tunable, continuous-wave, doubly resonant, monolithic optical parametric oscillator (OPO) using 5% MgO-doped LiNbO3 as a non-linear crystal with a birefringent phase-matching configuration. By tuning the frequency of a pump laser, longitudinal mode selection over 20 successive modes, corresponding to a 60 GHz span, was possible, owing to the simple structure of the monolithic OPO. Continuous frequency tuning was achieved using an external waveguide-type electrooptic phase modulator (EOM). By changing the modulation frequency of the EOM, frequency tuning of the optical sidebands over 12 GHz was possible, which is larger than the one free spectral range of the monolithic cavity of 3 GHz. We could observe the Cs-D1 (894 nm), Cs-D2 (852 nm), Rb-D1 (795 nm), acetylene R9 (1520 nm) and P9 (1530 nm) transitions with the single monolithic OPO.  相似文献   
167.
A multi-grating periodically poled LiNb03 (PPLN) doubly resonant optical parametric oscillator (DROPO) pumped by a 2-ttm laser is demonstrated experimentally. Employing acousto-optically Q-switched Tm,Ho:GdV04 laser with pump pulse of 25ns and repetition rate of lOkHz as pump sources firstly, the noncritically quasi- phase-matched (QPM) tunable mid-IR output in 3.87-4.43 μm is produced. Wavelength tuning is achieved with crystal temperature tuning from 50-180^o C. When the incident average pump power is 3 W at 2.048μm, the total OPO output power of 195mW at wavelength 3.88μm is obtained, corresponding to optical-to-optical conversion efficiency up to 6.5%.  相似文献   
168.
169.
Using the hydrodynamic model of a semiconductor plasma, the influence of carrier heating on the parametric dispersion and amplification has been analytically investigated in a doped III-V semiconductor, viz. n-InSb. The origin of the phenomena lies in the effective second-order optical susceptibility (χe(2)) arising due to the induced nonlinear current density of the medium. Using the coupled-mode theory, the threshold value of pump electric field (|E0T|para) and parametric gain coefficient (αpara) are obtained via χe(2). The relevant experiment has not been performed. Proper selection of the doping level not only lowers |E0T|para required for the onset of parametric excitation but also enhances αpara. The carrier heating induced by the intense pump modifies the electron collision frequency and hence the nonlinearity of the medium, which in turn further lowers |E0T|para and enhances αpara by a factor of ∼103 and ∼2×102, respectively. The results strongly suggest that the incorporation of carrier heating by the pump in the analysis leads to a better understanding of parametric processes in solids and gaseous plasmas, which can be of great use in the generation of squeezed states.  相似文献   
170.
Collinear broadband optical parametric generation (OPG) using periodically poled lithium niobate (PPLN) crystals were designed and experimentally demonstrated with the quasi-phase matching (QPM) periods of 21.5, 24.0, and 27.0 μm. The broad gain bandwidth was accomplished by choosing a specific set of the period and the pump wavelength that allows the group velocities of the signal and the idler to match close to the degeneracy point. OPG gain bandwidth and also the spectral region could be controlled by proper design of QPM period and pump wavelength. The total OPG gain bandwidth of 600, 900, and 1200 nm was observed for the PPLN devices with QPM periods of 21.5, 24.0, and 27.0 μm, respectively. We have also observed multiple color visible generation whenever the OPG spectrum was significantly broad. From the visible peaks of the three PPLN samples, it is found that broad gain bandwidth is crucial in the temperature-insensitive collinear simultaneous RGB generation from a single crystal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号