首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10864篇
  免费   3075篇
  国内免费   6174篇
化学   11480篇
晶体学   1211篇
力学   356篇
综合类   360篇
数学   886篇
物理学   5820篇
  2024年   101篇
  2023年   350篇
  2022年   501篇
  2021年   552篇
  2020年   429篇
  2019年   522篇
  2018年   375篇
  2017年   494篇
  2016年   538篇
  2015年   629篇
  2014年   650篇
  2013年   966篇
  2012年   878篇
  2011年   914篇
  2010年   815篇
  2009年   836篇
  2008年   1024篇
  2007年   985篇
  2006年   1121篇
  2005年   1036篇
  2004年   1027篇
  2003年   845篇
  2002年   742篇
  2001年   702篇
  2000年   426篇
  1999年   380篇
  1998年   380篇
  1997年   247篇
  1996年   262篇
  1995年   218篇
  1994年   236篇
  1993年   151篇
  1992年   160篇
  1991年   211篇
  1990年   164篇
  1989年   154篇
  1988年   47篇
  1987年   21篇
  1986年   7篇
  1985年   12篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
以硝基异噁唑-3-烯氧化吲哚1作为基于给体和受体的3C合成子,与叔丁基酯-3-烯氧化吲哚2,在碱性催化剂DABCO催化下发生Michael加成环化反应,获得10个新颖的连续双季碳螺环氧化吲哚拼接异噁唑类化合物3a~3j,产率为57%~70%, dr值为4/1~9/1, 其结构经1H NMR, 13C NMR和HR-MS(ESI-TOF)表征,并且经过单晶3f进一步确定了其结构。   相似文献   
992.
以P3HT(Poly(3-Hexylthiophene))为电子给体,PCBM([6,6]-Phenyl C61Butyric Acid Methyl Ester)为电子受体,在活性层P3HT:PCBM的退火过程中,利用磁场对活性层有机分子的排列取向作用,制备了有机体异质结太阳能电池。研究结果表明:当磁场强度为0.9MA/m时,器件的短路电流密度从7.414A/cm2提高到8.332A/cm2,填充因子也相应地增加,但开路电压却有所降低,最高的光电转换效率为2.562%。由光致发光光谱和原子力显微图像可知,磁场对活性层的结晶度、内部分子排列和表面形貌都有明显的影响。  相似文献   
993.
"在Pt/Ti/SiO2/Si基片上用溶胶-凝胶法生长制备了PZT(Pb(Zr1-xTix)O3)复合梯度铁电薄膜. 薄膜最终结构由6层组成,"向上"梯度薄膜在Pt底电极上的第一层从PbZrO3开始,顶层是PZT(50/50),即第一层是PbZrO3,第二层PZT90/10 (10%Ti),第三层是PZT80/20,第四层PZT70/30,第五层PZT60/40,第六层PZT50/50.每一层与此相反的是"向下"梯度PZT薄膜.用X射线衍射、俄歇电子能谱和阻抗分析来研究梯度薄膜的结构与介电特性.600  相似文献   
994.
采用密度泛函理论研究了双铑催化3-重氮吲哚啉-2-亚胺与2H-吖丙因[3+3]内环化反应过程. 该过程主要包含铑金属卡宾体形成、 C―N键活化裂解和吲哚啉[3+3]内环化反应. 研究结果表明, 双铑催化剂发生偶联作用, 促进C-N偶联及2H-吖丙因C―N键裂解; 反应控速步骤为吲哚[3+3]环化反应过程, 铑催化剂在[3+3]环化前脱出. 对产物吡嗪并吲哚类化合物光电性质的分析表明产物具有较低空穴重组能, 吸收与荧光发射光谱存在较大斯托克斯位移. 因此该产物可作为潜在的空穴传输材料和荧光发射材料.  相似文献   
995.
以2,3-二氨基吡啶和2,3-丁二酮为起始原料,经环化、催化氢化和亲核取代反应合成了10个新型哌啶并[2,3-b]哌嗪类衍生物(3a~3j),其结构经1H NMR、13C NMR和HR-MS确证。体外抗血小板聚集活性研究表明,化合物3d、3e、3g、3h和3j具有一定的抗血小板聚集作用,其中化合物3h(IC50=1.24mmol/L)的活性显著优于母体化合物川芎嗪(IC50=3.96mmol/L)和阳性药物阿司匹林(IC50=2.41mmol/L)。  相似文献   
996.
作为一种非金属聚合半导体,石墨相氮化碳(g-C3N4)具有特殊的能带结构、可见光响应能力以及优良的物理化学性质以及生产成本低等特点,因而已成为目前光催化领域的研究热点.然而,由于g-C3N4被光激发的电子与空穴极易复合,导致g-C3N4材料的光催化性能并不理想.而助剂修饰是实现光生载流子有效分离以提高光催化活性的有效途径.众所周知,贵金属Pt可以作为光催化产氢的反应位点,但高昂的成本限制了它的实际应用.所以,开发高效的非贵金属助剂很有必要.近年来,NiS作为优良的电子助剂在光催化领域受到广泛关注.大量研究表明,NiS可以作为g-C3N4的产氢活性位点用于提高其光催化产氢性能.NiS助剂主要是通过水热、煅烧和液相沉淀的方法修饰在g-C3N4的表面上.相较而言,助剂的光沉积方法具有一些独特的优势,例如节能、环保、简易并且能够实现其原位牢固地沉积在光催化剂的表面.然而g-C3N4光生电子和空穴强还原和氧化能力容易导致像Ni^2+的还原和S^2-的氧化等副反应发生,因此NiS助剂很难光沉积在g-C3N4材料表面.本文采用硫调控的光沉积法成功合成了NiS/g-C3N4光催化材料,该法利用g-C3N4在光照条件下产生的光生电子结合S以及Ni^2+生成NiS,然后原位沉积在g-C3N4表面.由于E0(S/NiS)(0.096 V)比E0(Ni^2+/Ni)(-0.23 V)更正,所以NiS优先原位沉积在g-C3N4表面.因此,硫调控的光沉积法促进了NiS的生成,并抑制了金属Ni等副反应的形成.通过X射线光电子能谱分析NiS/g-C3N4的表面化学态,表明该方法能成功地将NiS修饰在g-C3N4的表面,这也得到透射电镜和高分辨透射电镜结果的证实.光催化产氢的结果表明,NiS/g-C3N4光催化剂实现了良好的光催化性能,其最优产氢速率(244μmol h^?1 g^?1)接近于1 wt%Pt/g-C3N4(316μmol h^?1 g^?1).这是因为硫调控的光沉积法实现NiS助剂在g-C3N4表面的修饰,从而促进光生电子与空穴的有效分离,进而提高光催化制氢效率.此外,在该方法中,NiS的形成通常在g-C3N4光生电子的表面传输位点上,因此也能够使NiS提供更多的活性位点以提高界面产氢催化反应速率.电化学表征结果也进一步证明NiS/g-C3N4光催化剂加快了电子与空穴的分离和转移.更重要的是,这种简易且通用的方法还可以实现CoSx,CuSx,AgSx对g-C3N4的助剂修饰,并且都提高了g-C3N4的光催化产氢性能,表明该方法具有一定的普适性,为高效光催化材料的合成提供了新的思路.  相似文献   
997.
刘超  封越  韩字童  孙耀  王晓秋  张勤芳  邹志刚 《催化学报》2021,42(1):164-174,后插28-后插31
随着人口增长和全球工业化进程加快,人们饱受环境污染和能源短缺问题的困扰.半导体光催化技术作为一种高效、可持续、环境友好、有潜力的新技术,在环境净化和能源开发方面有着广阔的应用前景.到目前为止,人们已开发出多种半导体光催化剂,并广泛应用于污染物降解、氢气制备和二氧化碳还原等领域.其中,化合物K4Nb6O17具有典型的层状结构、合适的电子能带结构、结构易改性以及良好的电荷传输性能等特点,在光催化领域得到了广泛研究.然而,单纯K4Nb6O17仍存在光响应范围窄、光生载流子复合率高等问题,限制了K4Nb6O17的进一步应用.因此,需要对K4Nb6O17进行改性,拓宽其光吸收范围,提高其光生载流子分离效率,从而提高其光催化活性.本研究通过简单焙烧法制备Z型N-掺杂K4Nb6O17/g-C3N4(KCN)异质结光催化剂,其中石墨相氮化碳(g-C3N4)在复合材料中质量比约为50%.层状K4Nb6O17层板的电子结构通过N掺杂进行调控,拓宽其光响应范围,使其具有可见光响应;同时,形成的g-C3N4位于N-掺杂K4Nb6O17的外层以及内层空间,在这两种组分之间形成异质结,有利于提高光生载流子的分离效率.荧光光谱、时间分辨荧光光谱和光电化学测试表明,N掺杂和异质结的形成有利于增强光生电子-空穴对的传输和分离效率.通过在可见光照射下降解罗丹明B(RhB)和产氢来评估材料的光催化性能.相比g-C3N4(8.24μmol/h)和Me-K4Nb6O17(~1.30μmol/h),KCN复合材料光催化产氢效率(~16.91μmol/h)得到了极大提高,并显示出极好的光催化产氢稳定性能.对于光催化降解RhB体系,KCN复合材料也显示出较好的光催化活性和稳定性,并能很好地将RhB矿化.鉴于KCN复合材料具有较小的比表面积(9.9 m^2/g)且无孔结构,认为比表面积对光催化活性影响较小.因此,与单组分相比,KCN复合材料光催化产氢和RhB降解活性都得到了极大提高,活性的增强主要归功于N掺杂和异质结形成的协同效应,其中N掺杂可以拓宽光捕获能力,异质结形成可提高电荷载流子的分离效率.电子自旋共振(ESR)谱表明,在KCN降解RhB体系中,超氧自由基(·O2^?)、羟基自由基(·OH)和空穴(h^+)作为主要活性物质都参与了反应.结合实验结果可以推测KCN复合材料满足了Z型光催化体系,该体系具有高效的光生载流子分离效率和较高的氧化还原能力.  相似文献   
998.
任周  刘洋  吕元  宋宪根  郑长勇  姜政  丁云杰 《催化学报》2021,42(4):606-617,中插27-中插30
贵金属物种(Rh或Ir络合物)在均相羰基化和氢甲酰化催化过程得到了广泛的应用,但始终存在分离繁琐等问题,其均相多相化可很大程度上简化分离操作,故一直广受重视.单位点催化剂因其具有可与均相相比拟的较高金属利用率和选择性而成为均相多相化的重要研究方向之一.研究发现,在碘物种存在的情况下用于固载金属物种的配位键容易断裂,进而导致金属物种的流失,而通过离子键固载的[Rh(CO)2I2]物种更加稳定,比如著名的甲醇羰基化“AceticaTM”工艺中,[Rh(CO)2I2]负一价阴离子物种是以离子键的方式固定在带有阳离子骨架的甲基化聚乙烯吡啶树脂上.与甲醇羰基化过程类似的乙醇羰基化过程是生产重要化工中间体丙酸的主要途径之一,但该过程的均相多相化始终存在着稳定性差这一关键问题.为了解决这一问题,基于之前将固载于季鏻盐聚合物的[Rh(CO)I3]2–应用于甲醇羰基化的工作,我们将类似的季鏻盐聚合物固载Rh基催化剂Rh-TPISP用于多相乙醇羰基化过程,通过多种表征进一步证明了Rh物种和P物种结构,并提出了“双离子键”模型.P的K边XANES证明了聚合物TPISP的季鏻化阳离子骨架特征.HAADF-STEM测试表明Rh-TPISP中的Rh呈现单位点分散的状态.Rh的XPS和XANES结果证明了Rh-TPISP中Rh物种的价态介于0~+1.通过EXAFS的拟合解析给出了[Rh(CO)I3]2–活性中心结构.由于[Rh(CO)2I2]为经典的羰基化活性中心,为了进一步证明该结构的正确性,我们将Rh-TPISP的EXAFS和IR谱图与标样[PPh3Et]+[Rh(CO)2I2]对比发现:在EXAFS谱图中,Rh-TPISP中的Rh-C峰高低于[PPh3Et]+[Rh(CO)2I2]的Rh-C峰高,而Rh-TPISP中的Rh-I峰高高于[PPh3Et]+[Rh(CO)2I2]的Rh-I峰高,这就说明Rh-TPISP中Rh物种的Rh-C配位数小于2,而Rh-I配位数大于2;在IR谱图中,标样[PPh3Et]+[Rh(CO)2I2]中有两个羰基振动峰,与该物种的两个Rh-C配位键相符,而Rh-TPISP中的只有一个羰基振动峰,说明Rh-C配位数为1.因此,Rh-TPISP催化剂的季鏻盐骨架中的每个P物种带有一个正电荷,每个带有两个负电荷的[Rh(CO)I3]2–通过与两个[P]+的静电作用进行固载,形成“双离子键”结构.该催化剂在固定床乙醇羰基化过程中表现出优异的羰基化活性、选择性和稳定性.在3.5 MPa、195 oC反应近1000 h后,Rh-TPISP催化剂TOF保持在约350 h–1,丙酰基选择性为95%以上,高出所有文献报道的均相和多相乙醇羰基化活性.其较高的活性主要是因为[Rh(CO)I3]2–比传统Rh活性相[Rh(CO)2I2]具有更强的富电子性,而较高的稳定性主要是由于“双离子键”这种强静电作用比“AceticaTM”工艺中“单离子键”更有利于Rh物种的固载.故Rh-TPISP催化剂中的“双离子键”对其优异的催化性能具有极其重要的作用,对后续多相乙醇羰基化的发展具有重要意义.  相似文献   
999.
使用四乙基氢氧化铵为有机模板剂,以低硅铝比(nSiO2/nAl2O3)的Y分子筛为铝源,通过转晶法制备结晶度良好的SSZ?13沸石分子筛。从凝胶配比方面考察了不同原料组成对分子筛合成的影响,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)及电感耦合等离子体(ICP)表征水热反应过程中的物相、形貌、硅铝比等变化,揭示分子筛合成过程。氨选择性催化还原(NH3?SCR)反应显示该分子筛具有优异的催化活性,为其工业上的广泛应用提供了可能性。  相似文献   
1000.
通过两步水热法制备泡沫镍(NF)负载Fe_2O_3纳米粒子@Ni_3S_2纳米线网状结构电极(Fe_2O_3@Ni_3S_2/NF)。运用X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、N_2吸附-脱附测试等方法对电极材料的物相和微观结构特征等进行了表征。水热条件下原位表面化学刻蚀生成的Ni_3S_2纳米线与三维多孔NF基体间拥有强结合力和低界面电阻,Fe_2O_3粒子均匀分布在纳米线的表面。在1 mol·L~(-1)的KOH溶液中,运用线性扫描伏安测试(LSV)、计时电位法、电化学交流阻抗测试(EIS)等对电极的电催化析氧(OER)性能进行了测试。结果表明:在100 mA·cm~(-2)的超高电流密度下,Fe_2O_3@Ni_3S_2/NF电极的OER过电势仅为223 mV,比Ni_3S_2/NF材料的过电势降低了285 mV;经过10 h计时电位测试,性能保持率高达80%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号