首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1737篇
  免费   241篇
  国内免费   33篇
化学   878篇
晶体学   5篇
力学   58篇
综合类   3篇
数学   29篇
物理学   1038篇
  2024年   2篇
  2023年   4篇
  2022年   21篇
  2021年   18篇
  2020年   57篇
  2019年   33篇
  2018年   34篇
  2017年   19篇
  2016年   65篇
  2015年   50篇
  2014年   66篇
  2013年   117篇
  2012年   59篇
  2011年   62篇
  2010年   82篇
  2009年   146篇
  2008年   156篇
  2007年   175篇
  2006年   129篇
  2005年   70篇
  2004年   76篇
  2003年   90篇
  2002年   83篇
  2001年   63篇
  2000年   54篇
  1999年   55篇
  1998年   45篇
  1997年   38篇
  1996年   33篇
  1995年   23篇
  1994年   19篇
  1993年   8篇
  1992年   12篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   8篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1982年   3篇
  1981年   3篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有2011条查询结果,搜索用时 250 毫秒
91.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
92.
Multidimensional nano‐heterostructures (NHSs) that have unique dimensionality‐dependent integrative and synergic effects are intriguing but still underdeveloped. Here, we report the first helical 1D/2D epitaxial NHS between CdS and ZnIn2S4. Experimental and theoretical studies reveal that the mismatches in lattice and dangling bonds between 1D and 2D units govern the growth procedure. The resulting well‐defined interface induces the delocalized interface states, thus facilitate the charge transfer and enhance the performance in the photoelectrochemical cells. We foresee that the mechanistic insights gained and the electronic structures revealed would inspire the design of more complex 1D/2D NHSs with outstanding functionalities.  相似文献   
93.
A mild photochemical approach was applied to construct highly coupled metal–semiconductor dyads, which were found to efficiently facilitate the hydrogenation of nitrobenzene. Aniline was produced in excellent yield (>99 %, TOF: 1183) using formic acid as hydrogen source and water as solvent at room temperature. This general and green catalytic process is applicable to a wide range of nitroarenes without the involvement of high‐pressure gases or sacrificial additives.  相似文献   
94.
Nuclear magnetic resonance (NMR) relaxation times are shown to provide a unique probe of adsorbate–adsorbent interactions in liquid‐saturated porous materials. A short theoretical analysis is presented, which shows that the ratio of the longitudinal to transverse relaxation times (T1/T2) is related to an adsorbate–adsorbent interaction energy, and we introduce a quantitative metric esurf (based on the relaxation time ratio) characterising the strength of this surface interaction. We then consider the interaction of water with a range of oxide surfaces (TiO2 anatase, TiO2 rutile, γ‐Al2O3, SiO2, θ‐Al2O3 and ZrO2) and show that esurf correlates with the strongest adsorption sites present, as determined by temperature programmed desorption (TPD). Thus we demonstrate that NMR relaxation measurements have a direct physical interpretation in terms of the characterisation of activation energy of desorption from the surface. Further, for a series of chemically similar solid materials, in this case a range of oxide materials, for which at least two calibration values are obtainable by TPD, the esurf parameter yields a direct estimate of the maximum activation energy of desorption from the surface. The results suggest that T1/T2 measurements may become a useful addition to the methods available to characterise liquid‐phase adsorption in porous materials. The particular motivation for this work is to characterise adsorbate–surface interactions in liquid‐phase catalysis.  相似文献   
95.
A group of new chiral dications with a fixed, specific configuration at the stereogenic nitrogen center was created. Stereoselective synthesis and recrystallization give the diastereomerically and enantiomerically pure dications, including a chiral amphiphile with surface‐active properties.  相似文献   
96.
pH‐responsive microgels are unique stabilizers for stimuli‐sensitive emulsions that can be broken on demand by changing the pH value. However, recent experiments have indicated that electrostatic interactions play a different role to that in conventional Pickering emulsions. The influence of charges on the interactions between microgels at the oil–water interface is now described. Compression isotherms of microgels with different charge density and architecture were determined in a Langmuir trough, and counter‐intuitive results were obtained: Charged microgels can be compressed more easily than uncharged microgels. The compressibility of microgels is thus not determined by direct Coulomb repulsion. Instead, the different swelling of the microgels in the charged and the uncharged states is proposed to be the key parameter.  相似文献   
97.
The adsorption of organic molecules onto the close‐packed facets of coinage metals is studied, and how accurately adsorption heights can be described by using recent advances of the van der Waals density functional (vdWDF), with optPBE/vdWDF, optB86b/vdWDF, vdWDF2, and rev/vdWDF2 functionals is illustrated. The adsorption of two prototypical aromatic hydrocarbons is investigated, and the calculated adsorption heights are compared to experimental literature values from normal incident X‐ray standing wave absorption and a state‐of‐the‐art semi‐empirical method. It is shown that both the optB86b/vdWDF and rev/vdWDF2 functionals describe adsorption heights with an accuracy of 0.1 Å, compared to experimental values, and are concluded as reliable methods of choice for related systems.  相似文献   
98.
Metal‐oxide nanostructure‐decorated extrinsic semiconductor interfaces modified through in situ nitridation greatly expand the range of sensor interface response. Select metal‐oxide sites, deposited to an n‐type nanopore‐coated microporous interface, direct a dominant electron‐transduction process for reversible chemical sensing, which minimizes chemical‐bond formation. The oxides are modified to decrease their Lewis acidity through a weak interaction to form metal oxynitride sites. Conductometric and X‐ray photoelectron spectroscopy measurements demonstrate that in situ treatment changes the reversible interaction with the analytes NH3 and NO. The sensor range is extended, which creates a distinct new family of responses determined by the Lewis acidity/basicity of a given analyte relative to that of the nanostructures chosen to decorate the interface. The analyte response, broadened in a substantial and predictable way by nitridation, is explained by the recently developing inverse hard/soft acid/base model (IHSAB) of reversible electron transduction.  相似文献   
99.
Simultaneously improving energy efficiency (EE) and material stability in electrochemical CO2 conversion remains an unsolved challenge. Among a series of ternary Sn-Ti-O electrocatalysts, 3D ordered mesoporous (3DOM) Sn0.3Ti0.7O2 achieves a trade-off between active-site exposure and structural stability, demonstrating up to 71.5 % half-cell EE over 200 hours, and a 94.5 % Faradaic efficiency for CO at an overpotential as low as 430 mV. DFT and X-ray absorption fine structure analyses reveal an electron density reconfiguration in the Sn-Ti-O system. A downshift of the orbital band center of Sn and a charge depletion of Ti collectively facilitate the dissociative adsorption of the desired intermediate COOH* for CO formation. It is also beneficial in maintaining a local alkaline environment to suppress H2 and formate formation, and in stabilizing oxygen atoms to prolong durability. These findings provide a new strategy in materials design for efficient CO2 conversion and beyond.  相似文献   
100.
It is highly desirable but challenging to optimize the structure of photocatalysts at the atomic scale to facilitate the separation of electron–hole pairs for enhanced performance. Now, a highly efficient photocatalyst is formed by assembling single Pt atoms on a defective TiO2 support (Pt1/def‐TiO2). Apart from being proton reduction sites, single Pt atoms promote the neighboring TiO2 units to generate surface oxygen vacancies and form a Pt‐O‐Ti3+ atomic interface. Experimental results and density functional theory calculations demonstrate that the Pt‐O‐Ti3+ atomic interface effectively facilitates photogenerated electrons to transfer from Ti3+ defective sites to single Pt atoms, thereby enhancing the separation of electron–hole pairs. This unique structure makes Pt1/def‐TiO2 exhibit a record‐level photocatalytic hydrogen production performance with an unexpectedly high turnover frequency of 51423 h?1, exceeding the Pt nanoparticle supported TiO2 catalyst by a factor of 591.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号