首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1737篇
  免费   241篇
  国内免费   33篇
化学   878篇
晶体学   5篇
力学   58篇
综合类   3篇
数学   29篇
物理学   1038篇
  2024年   2篇
  2023年   4篇
  2022年   21篇
  2021年   18篇
  2020年   57篇
  2019年   33篇
  2018年   34篇
  2017年   19篇
  2016年   65篇
  2015年   50篇
  2014年   66篇
  2013年   117篇
  2012年   59篇
  2011年   62篇
  2010年   82篇
  2009年   146篇
  2008年   156篇
  2007年   175篇
  2006年   129篇
  2005年   70篇
  2004年   76篇
  2003年   90篇
  2002年   83篇
  2001年   63篇
  2000年   54篇
  1999年   55篇
  1998年   45篇
  1997年   38篇
  1996年   33篇
  1995年   23篇
  1994年   19篇
  1993年   8篇
  1992年   12篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   8篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1982年   3篇
  1981年   3篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有2011条查询结果,搜索用时 736 毫秒
61.
62.
Water‐dispersible, polymer‐wrapped nanocrystals are highly sought after for use in biology and chemistry, from nanomedicine to catalysis. The hydrophobicity of their native ligand shell, however, is a significant barrier to their aqueous transfer as single particles. Ligand exchange with hydrophilic small molecules or, alternatively, wrapping over native ligands with amphiphilic polymers is widely employed for aqueous transfer; however, purification can be quite cumbersome. We report here a general two‐step method whereby reactive stripping of native ligands is first carried out using trialkyloxonium salts to reveal a bare nanocrystal surface. This is followed by chemically directed immobilization of a hydrophilic polymer coating. Polyacrylic acids, with side‐chain grafts or functional end groups, were found to be extremely versatile in this regard. The resulting polymer‐wrapped nanocrystal dispersions retained much of the compact size of their bare nanocrystal precursors, highlighting the unique role of monomer side‐chain functionality to serve as effective, conformal ligation motifs. As such, they are well poised for applications where tailored chemical functionality at the nanocrystal's periphery or improved access to their surfaces is desirable. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
63.
We report an enhanced sampling technique that allows to reach the multi‐nanosecond timescale in quantum mechanics/molecular mechanics molecular dynamics simulations. The proposed technique, called horsetail sampling, is a specific type of multiple molecular dynamics approach exhibiting high parallel efficiency. It couples a main simulation with a large number of shorter trajectories launched on independent processors at periodic time intervals. The technique is applied to study hydrogen peroxide at the water liquid–vapor interface, a system of considerable atmospheric relevance. A total simulation time of a little more than 6 ns has been attained for a total CPU time of 5.1 years representing only about 20 days of wall‐clock time. The discussion of the results highlights the strong influence of the solvation effects at the interface on the structure and the electronic properties of the solute. © 2017 Wiley Periodicals, Inc.  相似文献   
64.
The aggregation behavior of P3HT is investigated at the interface of orthogonal solvents for P3HT. The changeable characteristics of P3HT aggregate dispersions, for example, extent of aggregation and intrachain order, are studied by varying (1) the interfacial area, (2) the poor solvent used to induce aggregation – dichloromethane (DCM), hexane (HEX), and acetonitrile (AcN) – and (3) the relative composition of the good solvent, chloroform (CF), and poor solvents. The results are compared to those observed using rapid injection of the solvent. Miscibility gap values (Δδ) provide a reasonable justification of the assembly behavior of P3HT in the solvent mixtures in terms of the kinetics of polymer aggregation and the kinetics of solvent mixing at the interface. Atomic force microscopy (AFM) is used to analyze the morphology of films processed from dispersions with disparate characteristics, but having the same solvent composition, for example, 70:30 CF:HEX or 60:40 CF:DCM. Based on the disparity of the kinetics and miscibility gap values, the prevalence of specific structural motifs in the films, for example, spheroids (globules) and fibers, is effectively rationalized in terms of the structural attributes of the aggregates in the liquid phase rather than the evaporation rate (boiling point) differences of the solvents in the mixture. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 999–1011  相似文献   
65.
66.
Surface welding effect of covalent adaptable network (CAN) polymers enables self‐healing, reprocessing and recycling of thermosets, but little is known about their welding behaviors during repeated welding‐peeling cycles. In this article, we study the cyclic welding effect of an epoxy based thermal‐sensitive CAN. Surface roughness is generated by rubbing the sample on sandpapers with different grid sizes. The welding‐peeling cycles are repeated on the same pair of samples for five times, with roughness amplitude and interfacial fracture energy measured in each cycle. It is shown that the roughness gradually decreases during the repeated welding cycles, especially when a long welding time or high welding pressure is applied. Even though lower roughness amplitude promotes the contact area, the interfacial fracture energy reduces due to the increased BER activation energy after long‐time heating. A multiscale constitutive model is adopted, where we incorporate an explicit expression of interfacial contact area as a function of root‐mean‐square roughness parameter. The model is able to capture the evolving interfacial fracture energy during repeated welding cycles by using the measured roughness parameter, network modulus and BER activation energy. The study provides theoretical basis for the design and applications of CANs involving cyclic welding‐peeling operations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 402–413.  相似文献   
67.
68.
The realization of water electrolysis on the basis of highly active, cost-effective electrocatalysts is significant yet challenging for achieving sustainable hydrogen production from water. Herein, N-doped Ni3S2/N-doped MoS2 1D hetero-nanowires supported by Ni foam (N-Ni3S2/N-MoS2/NF) are readily synthesized through a chemical transformation strategy by using NiMoO4 nanowire array growth on Ni foam (NiMoO4/NF) as the starting material. With the in situ generation of Ni3S2/MoS2 heterointerfaces within nanowires and the incorporation of N anions, an extraordinary hydrophilic nature with abundant, well-exposed active sites and optimal reaction dynamics for both oxidation and reduction of water are obtained. Attributed to these properties, as-converted N-Ni3S2/N-MoS2/NF exhibits highly efficient electrocatalytic activities for both hydrogen and oxygen evolution reactions under alkaline conditions. The superior bifunctional properties of N-Ni3S2/N-MoS2/NF enable it to effectively catalyze the overall water-splitting reaction.  相似文献   
69.
70.
《Physics letters. A》2020,384(20):126412
Capillary condensation, which takes place in confined geometries, is the first-order vapor-to-liquid phase transition and is explained by the Kelvin equation, but the equation's applicability for arbitrarily curved surface has been long debated and is severe problem. Recently, we have proposed generic dynamic equations for moving surfaces. Application of the equations to the vapor/fluid interfaces in chemical equilibrium conditions nearly trivially solves the generalization problem for the Kelvin equation. The equations are universally true for any surfaces: atomic, molecular, micro or macro scale, real or virtual, Riemannian or pseudo-Riemannian, active or passive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号