首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100779篇
  免费   9021篇
  国内免费   9380篇
化学   45198篇
晶体学   1296篇
力学   7905篇
综合类   1375篇
数学   25830篇
物理学   37576篇
  2024年   168篇
  2023年   852篇
  2022年   1847篇
  2021年   1950篇
  2020年   2280篇
  2019年   2464篇
  2018年   2163篇
  2017年   2599篇
  2016年   3240篇
  2015年   2915篇
  2014年   3907篇
  2013年   7158篇
  2012年   5002篇
  2011年   5747篇
  2010年   4748篇
  2009年   6107篇
  2008年   6286篇
  2007年   6608篇
  2006年   5995篇
  2005年   4968篇
  2004年   4569篇
  2003年   4392篇
  2002年   4157篇
  2001年   3275篇
  2000年   3148篇
  1999年   2798篇
  1998年   2571篇
  1997年   2102篇
  1996年   1838篇
  1995年   1677篇
  1994年   1562篇
  1993年   1262篇
  1992年   1235篇
  1991年   912篇
  1990年   771篇
  1989年   665篇
  1988年   638篇
  1987年   487篇
  1986年   412篇
  1985年   477篇
  1984年   471篇
  1983年   229篇
  1982年   382篇
  1981年   432篇
  1980年   319篇
  1979年   320篇
  1978年   235篇
  1977年   213篇
  1976年   163篇
  1973年   122篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
121.
Two series of novel fluorinated poly(ether imide)s (coded IIIA and IIIB ) were prepared from 2,6‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride and 2,7‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride, respectively, with various trifluoromethyl‐substituted aromatic bis(ether amine)s by a standard two‐step process with thermal or chemical imidization of the poly(amic acid) precursors. These fluorinated poly(ether imide)s showed good solubility in many organic solvents and could be solution‐cast into transparent, flexible, and tough films. These films were nearly colorless, with an ultraviolet–visible absorption edge of 364–386 nm. They also showed good thermal stability with glass‐transition temperatures of 221–298 °C, 10% weight loss temperatures in excess of 489 °C, and char yields at 800 °C in nitrogen greater than 50%. The 2,7‐substituted IIIB series also showed better solubility and higher transparency than the isomeric 2,6‐substituted IIIA series. In comparison with nonfluorinated poly (ether imide)s, the fluorinated IIIA and IIIB series showed better solubility, higher transparency, and lower dielectric constants and water absorption. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5909–5922, 2006  相似文献   
122.
New water‐soluble methacrylate polymers with pendant quaternary ammonium (QA) groups were synthesized and used as antibacterial materials. The polymers with pendant QA groups were obtained by the reaction of the alkyl halide groups of a previously synthesized functional methacrylate homopolymer with various tertiary alkyl amines containing 12‐, 14‐, or 16‐carbon alkyl chains. The structures of the functional polymer and the polymers with QA groups were confirmed with Fourier transform infrared and 1H and 13C NMR. The degree of conversion of alkyl halides to QA sites in each polymer was determined by 1H NMR to be over 90% in all cases. The number‐average molecular weight and polydispersity of the functional polymer were determined by size exclusion chromatography to be 32,500 g/mol and 2.25, respectively. All polymers were thermally stable up to 180 °C according to thermogravimetric analysis. The antibacterial activities of the polymers with pendant QA groups against Staphylococcus aureus and Escherichia coli were determined with broth‐dilution and spread‐plate methods. All the polymers showed excellent antibacterial activities in the range of 32–256 μg/mL. The antibacterial activity against S. aureus increased with an increase in the alkyl chain length for the ammonium groups, whereas the antibacterial activity against E. coli decreased with increasing alkyl chain length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5965–5973, 2006  相似文献   
123.
A new class of thermosetting poly(2,6‐dimethyl‐1,4‐phenylene oxide)s containing pendant epoxide groups were synthesized and characterized. These new epoxy polymers were prepared through the bromination of poly(2,6‐dimethyl‐1,4‐phenylene oxide) in halogenated aromatic hydrocarbons followed by a Wittig reaction to yield vinyl‐substituted polymer derivatives. The treatment of the vinyl‐substituted polymers with m‐chloroperbenzoic acid led to the formation of epoxidized poly(2,6‐dimethyl‐1,4‐phenylene oxide) with variable pendant ratios, and the structures and properties were studied with nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The ratios of pendant functional groups were tailored for the polymer properties, and the results showed that the glass‐transition temperatures increased as the benzylic protons were replaced by bromo‐, vinyl‐, or epoxide‐functional groups, whereas the thermal stability decreased in comparison with the original polymer. Within a molar fraction of 20–50%, the degree of functionalization had little effect on the glass‐transition temperature; however, it correlated inversely with the thermal stability of each functionalized polymer. The thermal curing behavior of the epoxide‐functionalized polymer was enhanced by the increment of the pendant functionality, which resulted in a significant increase in the glass‐transition temperature as well as the thermal stability after the curing reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5875–5886, 2006  相似文献   
124.
Polyphenylsilsesquioxane (PPSQ) was incorporated into an epoxy resin to prepare organic–inorganic composites, and two strategies were adopted to afford composites with different morphologies. Phase separation induced by polymerization occurred in the physical blending system. However, nanostructured composites were obtained when a catalytic amount of aluminum triacetylacetonate was added to mediate the reaction between PPSQ and diglycidyl ether of bisphenol A (DGEBA). The intercomponent reaction significantly suppressed the phase separation on the micrometer scale. Organic–inorganic composites with different morphologies displayed quite different thermomechanical properties. Both differential scanning calorimetry and dynamic mechanical analysis showed that the nanostructured composites possessed higher glass‐transition temperatures than the phase‐separated composites with the same loading of PPSQ, although the intercomponent reaction between PPSQ and DGEBA reduced the crosslinking density of the epoxy matrix. This result was ascribed to the presence of nanosized PPSQ domains in the nanostructured composites, which acted as physical crosslinking sites and thus reinforced the epoxy networks. The nanoreinforcement of the PPSQ domains afforded the enhanced dynamic storage modulus for the nanostructured composites in comparison with the phase‐separated composites with a PPSQ concentration less than 15 wt %. In terms of thermogravimetric analysis, the organic–inorganic composites displayed improved thermal stability and flame retardancy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1093–1105, 2006  相似文献   
125.
New series of cycloaliphatic poly(ester‐amide)s, poly(1,4‐cyclohexanedimethyleneterephthalate‐co‐1,3‐cyclohexanedimethylene terephthalamide), were synthesized through solution polymerization route. The compositions of ester/amide units in the copolymers were varied from 0 to 100% by varying the amount of 1,4‐cyclohexanedimethanol and 1,3‐cyclohexanebis(methylamine) in the feed. The structures of the polymers were confirmed by NMR and FTIR, and the molecular weights were determined by inherent viscosity. The composition analysis by NMR reveals that the reactivity of the diamine toward the acid chlorides is lowered than that of diol, which results in the formation of more ester content in the poly (ester‐amides). The thermal analysis indicate that the new poly(ester‐amide)s having less than 10 mol % of amide linkages are thermotropic liquid crystalline from 200 to 250 °C and a thread like nematic phases are observed under the polarizing microscope. WXRD studies suggest that the liquid crystalline domains promote the nucleation process in the polyester chains and increases the percent crystallinity of the poly(ester‐amide)s. The glass transition temperature of the copolymers initially increases with increase in amide units because of the presence of nematic phases and subsequently follows the Flory–Fox behavior. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 42–52, 2006  相似文献   
126.
We reacted various dimeric, liquid‐crystalline epoxy–imine monomers, differing in the length of the central aliphatic spacer or the dipolar moments, with heptanedioic acid. The resulting systems showed a liquid‐crystalline phase in some cases, depending on the dimer and on the reaction conditions. The systems were characterized with respect to their mesomorphic properties and then were submitted to dynamic mechanical thermal analysis in both fixed‐frequency and frequency‐sweep modes in the shear sandwich configuration. The arrangement in the liquid‐crystalline phase seemed to be mainly affected both by the polarization of the mesogen and by the reaction temperature, which favored the liquid‐crystalline arrangement when it was lying in the range of stability of the dimer mesophase. In agreement with other recent literature data, dynamic mechanical thermal analysis results suggested that the presence of the mesogen directly incorporated into the main chain increased the lifetimes of the elastic modes both in the isotropic phase and in the liquid‐crystalline phase with respect to side‐chain liquid‐crystalline elastomers and that the time–temperature superposition principle did not hold through the liquid‐crystalline‐to‐isotropic transition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44:6270–6286, 2006  相似文献   
127.
A differential AC-chip calorimeter capable of measuring the step in heat capacity at the glass transition in nanometer-thin films is described. Because of the differential setup, pJ/K sensitivity is achieved. Heat capacity can be measured for sample masses below 1 ng in broad temperature range as needed for the study of the glass transition in nanometer-thin polymeric films. Relative accuracy is sufficient to investigate the changes in heat capacity as the step at the glass transition of polystyrene. The step is about 25% of the total heat capacity of polystyrene. The calorimeter allows for the frequency dependent measurement of complex heat capacity in the frequency range from 1 Hz to 1 kHz. The glass transition in thin polystyrene films (50–4 nm) was determined at well-defined experimental time scales. No thickness dependency of the glass transition temperature was observed within the error limits (±3 K)—neither at constant frequency (40 Hz) nor for the trace in the activation diagram (1 Hz–1 kHz). © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2996–3005, 2006  相似文献   
128.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   
129.
A series of new polyimides were prepared via the polycondensation of (3‐amino‐2,4,6‐trimethylphenyl)‐(3′‐aminophenyl)methanone and aromatic dianhydrides, that is, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride. The structures of the polyimides were characterized by Fourier transform infrared and NMR measurements. The properties were evaluated by solubility tests, ultraviolet–visible analysis, differential scanning calorimetry, and thermogravimetric analysis. The two different meta‐position‐located amino groups with respect to the carbonyl bridge in the diamine monomer provided it with an unsymmetrical structure. This led to a restriction on the close packing of the resulting polymer chains and reduced interchain interactions, which contributed to the solubility increase. All the polyimides except that derived from BPDA had good solubility in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfone, and in common organic solvents, such as cyclohexanone and chloroform. In addition, these polyimides exhibited high glass‐transition values and excellent thermal properties, with an initial thermal decomposition temperature above 470 °C and glass‐transition temperatures in the range of 280–320 °C. The polyimide films also exhibited good transparency in the visible‐light region, with transmittance higher than 80% at 450 nm and a cutoff wavelength lower than 370 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1291–1298, 2006  相似文献   
130.
Divinylsiloxane‐bisbenzocyclobutene (DVS‐bisBCB) polymer has very low dielectric constant and dissipation factor, good thermal stability, and high chemical resistance. The fracture toughness of the thermoset polymer is moderate due to its high crosslink density. A thermoplastic elastomer, polystyrene–polybutadiene–polystyrene triblock copolymer, was incorporated into the matrix to enhance its toughness. The cured thermoset matrix showed different morphology when the elastomer was added to the B‐staged prepolymer or when the elastomer was B‐staged with the DVS‐bisBCB monomer. Small and uniformly distributed elastomer domains were detected by transmission electron micrographs (TEM) in the former case, but TEM did not detect a separate domain in the latter case. A high percentage of the polystyrene–polybutadiene–polystyrene triblock copolymer could be incorporated into the DVS‐bisBCB thermoset matrix by B‐staging the triblock copolymer with the BCB monomer. The elastomer increased the fracture toughness of DVS‐bisBCB polymer as indicated by enhanced elongation at break and increased K1c values obtained by the modified edge‐lift‐off test. Elastomer modified DVS‐bisBCB maintained excellent electrical properties, high Tg and good thermal stability, but showed higher coefficient of linear thermal expansion values. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1591–1599, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号