首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78536篇
  免费   8664篇
  国内免费   7828篇
化学   37455篇
晶体学   1403篇
力学   11178篇
综合类   846篇
数学   23372篇
物理学   20774篇
  2024年   167篇
  2023年   863篇
  2022年   1873篇
  2021年   1863篇
  2020年   2268篇
  2019年   2176篇
  2018年   2089篇
  2017年   2619篇
  2016年   2865篇
  2015年   2474篇
  2014年   3939篇
  2013年   5581篇
  2012年   4501篇
  2011年   5413篇
  2010年   4516篇
  2009年   5238篇
  2008年   4905篇
  2007年   4804篇
  2006年   4335篇
  2005年   3905篇
  2004年   3622篇
  2003年   3024篇
  2002年   3109篇
  2001年   2238篇
  2000年   2000篇
  1999年   1821篇
  1998年   1617篇
  1997年   1376篇
  1996年   1258篇
  1995年   1142篇
  1994年   1082篇
  1993年   855篇
  1992年   836篇
  1991年   587篇
  1990年   553篇
  1989年   509篇
  1988年   416篇
  1987年   333篇
  1986年   295篇
  1985年   301篇
  1984年   268篇
  1983年   118篇
  1982年   173篇
  1981年   183篇
  1980年   173篇
  1979年   185篇
  1978年   151篇
  1977年   132篇
  1976年   96篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
The flow around spherical, solid objects is considered. The boundary conditions on the solid boundaries have been applied by replacing the boundary with a surface force distribution on the surface, such that the required boundary conditions are satisfied. The velocity on the boundary is determined by extrapolation from the flow field. The source terms are determined iteratively, as part of the solution. They are then averaged and are smoothed out to nearby computational grid points. A multi‐grid scheme has been used to enhance the computational efficiency of the solution of the force equations. The method has been evaluated for flow around both moving and stationary spherical objects at very low and intermediate Reynolds numbers. The results shows a second order accuracy of the method both at creeping flow and at Re=100. The multi‐grid scheme is shown to enhance the convergence rate up to a factor 10 as compared to single grid approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
182.
The process of single liquid drop impact on thin liquid surface is numerically simulated with moving particle semi‐implicit method. The mathematical model involves gravity, viscosity and surface tension. The model is validated by the simulation of the experimental cases. It is found that the dynamic processes after impact are sensitive to the liquid pool depth and the initial drop velocity. In the cases that the initial drop velocity is low, the drop will be merged with the liquid pool and no big splash is seen. If the initial drop velocity is high enough, the dynamic process depends on the liquid depth. If the liquid film is very thin, a bowl‐shaped thin crown is formed immediately after the impact. The total crown subsequently expands outward and breaks into many tiny droplets. When the thickness of the liquid film increases, the direction of the liquid crown becomes normal to the surface and the crown propagates outward. It is also found that the radius of the crown is described by a square function of time: rC = [c(t ? t0)]0.5. When the liquid film is thick enough, a crown and a deep cavity inside it are formed shortly after the impact. The bottom of the cavity is initially oblate and then the base grows downward to form a sharp corner and subsequently the corner moves downward. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
183.
A least‐squares meshfree method based on the first‐order velocity–pressure–vorticity formulation for two‐dimensional incompressible Navier–Stokes problem is presented. The convective term is linearized by successive substitution or Newton's method. The discretization of all governing equations is implemented by the least‐squares method. Equal‐order moving least‐squares approximation is employed with Gauss quadrature in the background cells. The boundary conditions are enforced by the penalty method. The matrix‐free element‐by‐element Jacobi preconditioned conjugate method is applied to solve the discretized linear systems. Cavity flow for steady Navier–Stokes problem and the flow over a square obstacle for time‐dependent Navier–Stokes problem are investigated for the presented least‐squares meshfree method. The effects of inaccurate integration on the accuracy of the solution are investigated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
184.
The paper presents a new formulation of the integral boundary element method (BEM) using subdomain technique. A continuous approximation of the function and the function derivative in the direction normal to the boundary element (further ‘normal flux’) is introduced for solving the general form of a parabolic diffusion‐convective equation. Double nodes for normal flux approximation are used. The gradient continuity is required at the interior subdomain corners where compatibility and equilibrium interface conditions are prescribed. The obtained system matrix with more equations than unknowns is solved using the fast iterative linear least squares based solver. The robustness and stability of the developed formulation is shown on the cases of a backward‐facing step flow and a square‐driven cavity flow up to the Reynolds number value 50 000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
185.
A novel super-hydrophobic stearic acid (STA) film with a water contact angle of 166o was prepared by chemical adsorption on aluminum wafer coated with polyethyleneimine (PEI) film. The micro-tribological behavior of the super-hydrophobic STA monolayer was compared with that of the polished and PEI-coated Al surfaces. The effect of relative humidity on the adhesion and friction was investigated as well. It was found that the STA monolayer showed decreased friction, while the adhesive force was greatly decreased by increasing the surface roughness of the Al wafer to reduce the contact area between the atomic force microscope (AFM) tip and the sample surface to be tested. Thus the friction and adhesion of the Al wafer was effectively decreased by generating the STA monolayer, which indicated that it could be feasible and rational to prepare a surface with good adhesion resistance and lubricity by properly controlling the surface morphology and the chemical composition. Both the adhesion and friction decreased as the relative humidity was lowered from 65% to 10%, though the decrease extent became insignificant for the STA monolayer. The project supported by the National Natural Science Foundation of China (50375151, 50323007, 10225209) and the Chinese Academy of Sciences (KJCX-SW-L2)  相似文献   
186.
Magnetoresistance (MR) effects have been investigated in perpendicular and parallel magnetic fields at 300, 80 K and liquid He temperatures for undoped InSb thin films 0.1–2.3 μm thick grown on GaAs(1 0 0) substrates by MBE. At high temperatures, the intrinsic carriers show the parabolic negative MR observable only in magnetic fields parallel to the film. The skipping-orbit effect due to surface boundary scattering in the classical orbits in the plane vertical to the film has been argued to be responsible for the negative MR. At low temperatures (T=80 K), the transport is dominated by the two-dimensional (2D) electrons in the accumulation layers at the InSb/GaAs(1 0 0) hetero interface; MR is positive and shows a logarithmic increase with anisotropy between parallel and perpendicular field orientation, arising from the 2D weak anti-localization (WAL) that reflects the interplay between the spin-Zeeman effect and strong spin–orbit interaction caused by the asymmetric potential at the interface (Rashba term). The zero-field spin splitting energy of Δ013 meV, the electron effective mass of m*0.10m0 seven times of the band edge mass in bulk InSb and the effective g-factor of |g*|15 in the accumulation layer have been inferred from fits of MR for the 0.1 μm thick film to the 2D WL theory.  相似文献   
187.
Pyridine‐2‐carboximidates [methyl ( 1a ), ethyl ( 1b ), isopropyl ( 1c ), cyclopentyl ( 1d ), cyclohexyl ( 1e ), n‐octyl ( 1f ), and benzyl ( 1g )] were prepared from the reaction of 2‐cyanopyridine with the corresponding alcohols. Cyclopentyl‐substituted 1d was found to be a highly effective ligand for copper‐catalyzed atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). For example, the observed rate constant for a CuBr/ 1d catalytic system was found to be nearly twice as high as the cyclohexyl‐substituted CuBr/ 1e catalytic system [kobs = (1.19 vs 0.56) × 10?4 s?1). The effects of the solvents, temperature, catalyst/initiator, and solvent/monomer ratio on the ATRP of MMA were studied systematically for the CuBr/ 1d catalytic system. The optimum condition for the ATRP of MMA was found to be a 1:2:1:400 [CuBr]o/[ 1d ]o/[ethyl 2‐bromoisobutyrate]o/[MMA]o ratio at 60 °C in veratrole solution, which yielded well‐defined poly(MMA) with a narrow molecular weight distribution of 1.14. The catalytically active copper complex 2d was isolated from the reaction of CuBr with 1d . Narrow molecular weight distributions as low as 1.06 were achieved for the CuBr/ 1d catalytic system by employing 10% of the deactivator CuBr2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2747–2755, 2004  相似文献   
188.
The matrix formula developed in the context of heterochain theory, M?w = M?wp + WF ( I ? M )?1 S , was applied to describe the molecular weight development during free‐radical multicomponent polymerization. All of the required probabilistic parameters are expressed in terms of the kinetic‐rate constants and the various concentrations associated with them. In free‐radical polymerization, the number of heterochain types, N, needs to be extrapolated to infinity, and such extrapolation is conducted with only three different N values. This matrix formula can be used as a benchmark test if other approximate approaches can give reasonable estimates of the weight‐average molecular weights. The moment equations with the average pseudo‐kinetic‐rate constants for branching and crosslinking reactions may provide poor estimates when the copolymer composition drift during polymerization is very significant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2801–2812, 2004  相似文献   
189.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004  相似文献   
190.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号