首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4820篇
  免费   1673篇
  国内免费   1853篇
化学   2960篇
晶体学   355篇
力学   479篇
综合类   218篇
数学   98篇
物理学   4236篇
  2024年   50篇
  2023年   154篇
  2022年   185篇
  2021年   232篇
  2020年   139篇
  2019年   255篇
  2018年   168篇
  2017年   239篇
  2016年   269篇
  2015年   273篇
  2014年   502篇
  2013年   422篇
  2012年   377篇
  2011年   359篇
  2010年   420篇
  2009年   451篇
  2008年   486篇
  2007年   359篇
  2006年   310篇
  2005年   377篇
  2004年   324篇
  2003年   326篇
  2002年   239篇
  2001年   243篇
  2000年   168篇
  1999年   160篇
  1998年   117篇
  1997年   107篇
  1996年   99篇
  1995年   78篇
  1994年   71篇
  1993年   79篇
  1992年   69篇
  1991年   59篇
  1990年   64篇
  1989年   54篇
  1988年   19篇
  1987年   13篇
  1986年   11篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1951年   2篇
排序方式: 共有8346条查询结果,搜索用时 812 毫秒
991.
A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. The cavitating turbulent flow over a NACA0015 hydrofoil has been simulated at various temperatures from room temperature to 150°C by using the present cavitation model, which has been validated by the experimental data. It is seen that the thermodynamic effects of cavitation, vapor depression and temperature depression are much more predominant in high temperature water compared with those in room temperature water. These results indicate that the proposed thermodynamic cavitation model is reasonably applicable to the cavitating water flow in a wide temperature range.  相似文献   
992.
(111) preferentially oriented Ag2O film deposited by direct current reactive magnetron sputtering is annealed by rapid thermal processing at different annealing temperatures for 5 min. The film microstructure and optical properties are then characterized by x-ray diffractometry, scanning electron microscopy, and spectrophotometry, respectively. The results indicate that no clear Ag diffraction peak is discernable in the Ag2O film annealed below 200°C. In comparison, the Ag2O film annealed at 200°C begins to exhibit characteristic Ag diffraction peaks, and in particular the Ag2O film annealed at 250°C can demonstrate enhanced Ag diffraction peaks. This implies that the threshold of the thermal decomposition reaction to produce Ag particles is approximately 200°C for the Ag2O film. In addition, an evolution of the film surface morphology from compact and pyramid-like to a rough and porous structure clearly occurred with increasing annealing temperature. The porous structure might be attributable to the escape of the oxygen produced during annealing, while the rough surface might originate from the reconstruction of the surface. The dispersion of interference peak intensity in the reflectance and transmission spectra could be attributed to the Ag particles produced. The lowered crystallinity and Ag particles produced induce a lattice defect, which results in an enhanced transmissivity in the violet region and a weakened transmissivity in the infrared region.  相似文献   
993.
The electrical conductivity of powdered LiCr 0.35 Mn0.65O2 is measured under high pressure up to 26.22 GPa in the temperature range 300-413 K by using a diamond anvil cell. It is found that both conductivity and activation enthalpy change discontinuously at 5.36 GPa and 21.66 GPa. In the pressure range 1.10-5.36 GPa, pressure increases the activation enthalpy and reduces the carrier scattering, which finally leads to the conductivity increase. In the pressure ranges 6.32-21.66 GPa and 22.60-26.22 GPa, the activation enthalpy decreases with pressure increasing, which has a positive contribution to electrical conductivity increase. Two pressure-induced structural phase transitions are found by in-situ x-ray diffraction under high pressure, which results in the discontinuous changes of conductivity and activation enthalpy.  相似文献   
994.
实验测定了激光烧蚀Al等离子体中Al原子在380-500nm 波长范围内的时间和空间分辨发射光谱。由Al原子390.068nm、394.4nm、396.152nm、466.3056nm、451.25nm、352 .95nm发射光谱线的强度计算了等离子体电子温度,并由实验结果讨论了激光等离子体中电子温度的时间和空间演化特性。实验结果表明,当延时在100-1500ns范围内变化时,相应的电子温度Te范围为6200K -32700K;当距离靶表面0-1.8mm范围内变化时,相应的电子温度Te范围为9800K- 32700K, 电子温度在沿激光束方向上的分布具有很好的对称性。  相似文献   
995.
碰撞转动传能中存在量子干涉效应已经在静态池实验中被观测到,并且积分角也能被测量.利用分子束实验可得到转动传能更准确的信息,进而得到影响干涉角的的具体因素.文中利用一阶含时波恩近似和L-J相互作用势,建立了原子—双原子分子碰撞系统转动传能的量子干涉模型,描述了观察和测量微分干涉角的方法,得到了微分干涉角与碰撞半径和碰撞速度间的关系,同时也得到了积分干涉角和实验温度的关系.此理论模型对于理解和进行分子束实验是非常重要的.  相似文献   
996.
碰撞转动传能中存在量子干涉效应已经在静态池实验中被观测到,并且积分角也能被测量。但静态池掩盖了大量的实验信息,利用分子束实验可得到转动传能更准确的信息,进而得到影响干涉角的的具体因素。文中运用含时微扰的一级波恩近似理论和各向异性相互作用势,建立了原子-双原子分子(混合态)体系碰撞诱导转动能量传递中的量子干涉效应的理论模型,描述了观察和测量微分干涉角的方法,得到了微分干涉角与碰撞半径和碰撞速度间的关系,同时也得到了实验温度对微分干涉角的影响。此理论模型对于理解和进行分子束实验是非常重要的.  相似文献   
997.
发展了针对非局域热动平衡等离子体的K壳层电离平衡模型。模型中详细计算了各原子过程参数,并通过求解速率方程的稳态解得到各电离态的布居分布。在此基础之上,研究了谱线强度比值对等离子体温度、密度的依赖关系。最后,我们根据此模型的计算结果,分析了在神光II装置上获得的内爆靶丸掺Ar发射光谱实验数据,推断出靶丸芯区电子温度随时间的演化过程。  相似文献   
998.
夸克-夸克通过单胶子交换的相互作用在其反对称态上是相互吸引的,在致密夸克物质里,这种吸引相互作用会导致费米面上的双夸克凝聚,这就是所谓的夸克配对或色超导现象。本文介绍了夸克配对或色超导现象的基本知识和一些新进展。色超导是一个对称性自发破坏现象,有非常丰富的破缺方式,我们介绍了色超导对称性及其自发破坏模式的分析方法,介绍了怎样计算色超导体两个最基本的变量:能隙和迈斯纳质量。然后我们介绍了描述色超导现象的有效理论。最后是这些理论的一个应用,即计算色超导体里的中微子发射率以及其它输运性质。本文可以作为研究夸克物质理论的入门参考资料。  相似文献   
999.
研究了聚丙烯(PP)及含有受阻酚类抗氧剂和受阻胺类光稳定剂复合体系的PP复合物经过γ-射线辐照后发生的结构变化及抗老化剂所起作用。实验利用红外光谱(FTIR)和示差扫描量热法(DSC)对PP的结构变化进行了系统表征。研究结果表明,当辐照剂量较小(50 kGy)时,纯PP及其复合物体系均未发生明显降解;当辐照剂量较大(≥50 kGy)时,PP及其复合物的羰基指数迅速提高,二者的结晶温度和熔融温度大幅度降低,说明PP发生了严重降解。在相同γ-射线辐照剂量条件下(≥50 kGy),PP复合物的羰基指数高于纯PP,而结晶温度以及熔融温度低于纯PP,表明高辐照剂量下抗老化剂复合物的存在不但没有阻止聚丙烯的降解,反而加快了降解的速率。  相似文献   
1000.
Li XC  Yuan N  Jia PY  Niu DY 《光谱学与光谱分析》2010,30(11):2894-2896
采用介质阻挡放电等离子体喷枪装置,在大气压下流动氩气中产生了射流等离子体。利用光电倍增管,对射流等离子体进行了时空分辨测量,分析了等离子体喷枪内介质阻挡放电和外部等离子体羽的放电特性。利用高分辨率光谱仪采集等离子体羽处的发射光谱,通过对发射光谱中OH(A2Σ+→X2Π,307.7~308.9nm)及N2+的第一负系(B2Σ+u→X2Π+g,390~391.6nm)谱线拟合得到了射流等离子体的转动温度,拟合得到的转动温度分别为443和450K。在5%的误差范围内,这2种方法得到的结果是一致的。由于在大气压下,转动温度近似等于产生气体放电的气体温度,所以可以确定大气压射流等离子体气体温度。利用该方法研究了不同电压下的气体温度,发现气体温度随着外加电压增加而增大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号