首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1605篇
  免费   822篇
  国内免费   1221篇
化学   1768篇
晶体学   88篇
力学   263篇
综合类   31篇
数学   50篇
物理学   1448篇
  2024年   20篇
  2023年   48篇
  2022年   101篇
  2021年   93篇
  2020年   87篇
  2019年   107篇
  2018年   85篇
  2017年   81篇
  2016年   114篇
  2015年   99篇
  2014年   208篇
  2013年   247篇
  2012年   147篇
  2011年   168篇
  2010年   192篇
  2009年   173篇
  2008年   196篇
  2007年   176篇
  2006年   124篇
  2005年   169篇
  2004年   128篇
  2003年   129篇
  2002年   90篇
  2001年   87篇
  2000年   58篇
  1999年   69篇
  1998年   45篇
  1997年   59篇
  1996年   72篇
  1995年   44篇
  1994年   47篇
  1993年   39篇
  1992年   41篇
  1991年   32篇
  1990年   33篇
  1989年   26篇
  1988年   7篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
排序方式: 共有3648条查询结果,搜索用时 15 毫秒
191.
采用超声法将磁基体Fe3O4和BiVO4复合,制备了易于固液分离的磁性可见光催化剂BiVO4/Fe3O4。采用X射线衍射(XRD)、傅立叶转换红外光谱(FTIR)、紫外-可见漫反射光谱(DRS)、透射电子显微镜(TEM)和磁学性质测量系统(MPMS)对产物进行了表征,并以亚甲基蓝为目标降解物,考察了BiVO4/Fe3O4的可见光催化活性。当BiVO4与Fe3O4质量比为5:1时,BiVO4/Fe3O4的催化活性最高,反应经过5 h,对亚甲基蓝的降解率达到92.0%,而单独使用BiVO4为催化剂,降解率仅为72.5%。这表明Fe3O4不仅起到磁基体的作用,还起到助催化剂的作用。BiVO4/Fe3O4在外加磁场的作用下很容易被分离,撤消外加磁场后,通过搅拌又可重新分散。BiVO4/Fe3O4 3次回收后的降解率仍高于80%。  相似文献   
192.
制备了二胺和二酚修饰的晶态有机聚合物-无机杂化载体低聚苯乙烯基膦酸-膦酸氢锆(LCZSPP)轴向固载手性Salen Mn(Ⅲ)催化剂,将其应用于非官能烯烃的多相不对称环氧化反应.研究了两类轴向连接基团及助催化剂在催化不对称环氧化反应中的影响.结果表明,通过二胺为链接基团固载的催化剂在加入轴向助剂(NMO)的情况下,转化...  相似文献   
193.
首先利用高温分解法制备了粒径为18 nm的Fe3O4磁性纳米粒子, 并进行羧基化修饰, 然后与聚乙烯亚胺(PEI)化学修饰的氧化石墨烯进行交联反应, 得到磁功能化的氧化石墨烯(MGO)复合材料. 研究了氧化石墨烯片上的磁性纳米粒子的可控负载及其对复合材料磁性能的影响. 利用透射电子显微镜(TEM), 原子力显微镜(AFM), X射线衍射(XRD), 傅里叶变换红外(FT-IR)光谱, 热重分析(TGA), 振荡样品磁强计(VSM)等手段对MGO复合材料的形貌, 结构和磁性能进行了表征. 结果表明, 我们发展的MGO复合材料的制备方法具有简单、可控的优点, 所制备的MGO复合材料具有较高的超顺磁性. 该类磁性氧化石墨烯复合材料有望在磁靶向药物、基因输运、磁共振造影以及磁介导的生物分离和去除环境污染物等领域获得广泛的应用.  相似文献   
194.
罗亮  窦辉  郝迪  高思旖  张校刚 《化学学报》2011,69(14):1609-1616
以磁性离子液体1-丁基-3-甲基咪唑四氯化铁盐([bmim]FeCl4)为介质, 将多壁碳纳米管(MWCNTs)机械球磨分散在其中形成[bmim]FeCl4/MWCNTs凝胶后, 加入乙撑二氧噻吩(EDOT)单体, 利用阴离子 的氧化性进行原位聚合, 球磨法制备了均匀包覆不同含量MWCNTs的聚乙撑二氧噻吩/多壁碳纳米管(PEDOT/MWCNTs)纳米复合材料. 并以傅里叶红外光谱(FT-IR)、扫描电镜(SEM)和透射电镜(TEM)对PEDOT/MWCNTs的结构与形貌进行了表征|在0.5 mol/L硫酸溶液中, 用循环伏安测试(CV)研究了PEDOT/MWCNTs的电化学行为|采用四探针仪测定了PEDOT/MWCNTs的电导率|热重分析(TGA)研究了PEDOT/MWCNTs的热稳定性. 结果表明, PEDOT 纳米颗粒均匀包覆于MWCNTs表面, 形成了核壳结构|PEDOT与MWCNTs之间的共轭作用随着MWCNTs含量的增加而增强. MWCNTs的质量分数为30%的PEDOT/MWCNTs的电导率出现峰值, 达到7.46 S/cm, 且电化学活性最好. MWCNTs的质量分数为10%时, PEDOT/MWCNTs的热稳定性相对于PEDOT显著提高.  相似文献   
195.
采用油酸表面改性的粒径均一的Fe3O4磁性纳米粒子(OA-Fe3O4)与具有微相分离结构的聚苯乙烯-b-聚2-乙烯基吡啶(PS-b-P2VP)嵌段共聚物通过溶液共混,得到具有超顺磁性的PS-b-P2VP/Fe3O4纳米复合材料.结果表明,在OA-Fe3O4质量分数为1%,3%,5%和10%时,纳米粒子分散在PS相区;但OA-Fe3O4含量为8%时,纳米粒子在嵌段聚合物基体中的分散状态发生突变,形成大尺寸聚集体并分散在整个基体中,此时复合材料的流变行为发生相应变化.  相似文献   
196.
李海芳  杨红云  张英  王培龙  林金明 《色谱》2014,32(4):413-418
通过化学键合的方法制备单壁碳纳米管包覆的四氧化三铁(Fe3O4/CNTs)磁性复合纳米粒子。首先用水热法合成磁性Fe3O4纳米粒子,并进行硅烷氨基化处理,羧基化的单壁碳纳米管通过1-(3-二甲基氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)交联剂反应修饰到Fe3O4纳米颗粒表面。合成的Fe3O4/CNTs复合纳米粒子具有很高的磁响应度和很好的分散能力,是一种很好的分散固相萃取剂。本研究将合成的Fe3O4/CNTs纳米粒子用于分散固相微萃取富集牛奶中的香精添加剂,并与高效液相色谱分析联用,实现了香兰素和乙基香兰素的快速高效富集和高灵敏度检测,两者的检出限达10 μg/L,回收率大于92%。本研究表明,合成的Fe3O4/CNTs磁性复合粒子是一种很好的奶制品中香兰素添加剂的样品前处理富集材料。  相似文献   
197.
利用二乙醇胺(DEA)对氯甲基化聚苯乙烯基树脂(PS-Cl)进行表面改性,制备了亲水性的PS-DEA树脂,然后以FeCl3·6H2O和FeSO4·7H2O为前驱体通过共沉淀法原位复合制备了磁性PS-DEA树脂.表征了磁性PS-DEA样品的形貌、结构以及磁性能,研究了PS-DEA和磁性PS-DEA对水溶液中Hg(Ⅱ)的吸附性能.结果表明,含有Fe3O4的磁性PS-DEA树脂的比饱和磁化强度(Ms)为0.92 A·m2/kg,磁性树脂中Fe3O4所占的质量分数为1.7%.用Langmuir等温模型拟合了PS-DEA和磁性PS-DEA对水溶液中Hg(Ⅱ)的吸附数据,计算得到最大吸附量分别为320.51和352.11 mg/g,这表明磁性纳米粒子的引入有利于提高树脂的吸附性能,这种磁性树脂有望作为吸附剂用于水处理领域.  相似文献   
198.
磁性Fe_3O_4@SiO_2@ZrO_2对水中磷酸盐的吸附研究   总被引:2,自引:0,他引:2  
合成了以Fe3O4为核,以SiO2为壳的磁性纳米微粒(Fe3O4@Si O2),并采用沉淀沉积法将ZrO2包覆到材料表面。通过XRD、TEM、VSM、ζ电位、XPS和N2吸附/脱附等手段对材料进行表征,结果表明材料Fe3O4@SiO2@ZrO2上沉积了氧化锆纳米颗粒,具有超顺磁性,可在外加磁场作用下实现从水中快速分离。同时系统研究了材料对水中磷酸盐的吸附行为,结果表明沉积Zr O2使得材料对磷酸盐表现出良好的吸附性能,并且随着沉积量的增大吸附量增加。吸附等温线符合Freundlich方程。吸附动力学可用拟二级动力学模型描述,吸附速率随磷酸盐初始浓度增加而减小。磷酸盐吸附量随溶液p H值的增大而减小,但几乎不受离子强度影响。  相似文献   
199.
合成了一种新的两亲性环三磷腈衍生物, 该化合物通过自组装能形成具有一定规则孔道的微观结构, 具有包载功能. 采用红外光谱、 差热分析和扫描电子显微镜等对产物的结构、 结晶态及微观形貌进行了表征, 同时测试了其细胞毒性. 用该化合物包载姜黄素及磁性纳米粒子, 获得了具有磁靶向功能的载药体系, 研究了载药体系的结晶态、 微观形貌、 热稳定性及磁学性能, 并阐明了载药机制.  相似文献   
200.
磁性铁氧化物纳米粒子(MIONPs)是近几十年发展起来的一种具有磁靶向性的纳米材料,其以良好的磁靶向性、小尺寸效应、生物相容性等特点在生物医学领域具有很好的应用前景,尤其在药剂学领域的应用已经成为一个重要的研究方向。本文在总结近年来国内外有关多功能MIONPs研究成果的基础上,阐述了各种铁氧化物纳米粒子在药剂学领域的应用,主要包括MIONPs的智能载药靶向控释、对特殊药物的靶向负载、降低身体的多药耐药性(MDR)、加强药物治疗效果、载药穿透血脑屏障(BBB)等;并讨论了当前应用中的优点和不足。最后,展望了其在药物、药剂学领域的应用前景并指出了一些亟待解决的问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号