排序方式: 共有39条查询结果,搜索用时 0 毫秒
11.
基于可见-近红外光谱分析技术开发了手持式水果糖度检测装置,并用于水果糖度的现场实时分析.硬件系统主要包括微型光谱仪、卤素灯、O L ED显示屏、单片机及驱动电路等.采用K eil 5开发工具,用C语言开发单片机程序.配合上位机以LabView编写的光谱采集程序,实现光谱信息的采集.以苹果和大桃作为检测对象,对装置的检测... 相似文献
12.
基于可见/近红外透射光谱技术的红提糖度和含水率无损检测 总被引:1,自引:0,他引:1
本文研究基于可见/近红外透射光谱技术的红提糖度和含水率的无损检测方法.采集360个红提样本,并分别利用标准正态变量变换(Standard Normal Variable transformation,SNV)、SavitZky-Golay卷积平滑处理法(SavitZky-Golay,S_G)等光谱预处理方法处理后的数据... 相似文献
13.
利用近红外光谱技术结合组合区间偏最小二乘(SiPLS)、竞争性自适应重加权(CARS)、连续投影算法(SPA)、无信息变量消除(UVE)特征提取方法,运用深度信念网络(DBN)建立蓝莓糖度的通用检测模型,实现蓝莓糖度在线无损快速检测。采集了“蓝丰”和“瑞卡”共280个蓝莓样本的近红外光谱,采用手持折光仪测定其糖度;首先利用联合X-Y的异常样本识别方法(ODXY)检测到蓝丰和瑞卡蓝莓分别有2个和4个样本呈现异常,剔除该6个异常样本,对其余274个样本利用光谱-理化值共生距离算法(SPXY)以3∶1的比例划分出训练集和测试集;其次,对比分析卷积平滑(S-G平滑)、中心化、多元散射校正等预处理对蓝莓原始光谱的改善效果,运用SiPLS对光谱降维,筛选特征波段,利用CARS,UVE和SPA方法对特征波段进行二次筛选,以最优的特征波长建立DBN和偏最小二乘回归(PLSR)模型。结果表明,蓝莓糖度近红外检测模型的最优预处理方法为S-G平滑,SiPLS方法挑选的蓝莓糖度最优波段为593~765和1 458~1 630 nm,UVE算法从SiPLS筛选的346个变量中优选出159个最佳波长。建立蓝莓糖度DBN模型时,分析了不同隐含层数对检测模型的影响,并以交互验证均方根误差(RMSECV)作为适应度函数,利用粒子群算法(PSO)对各隐含层神经元个数在[1,100]之间寻优,发现隐含层为3层且隐含层节点数为67-43-25时,DBN模型的RMSECV达到最小,为0.397 7。无论是以全光谱还是特征波长建模,蓝莓糖度近红外DBN模型均优于常规PLSR方法;尤其以UVE方法二次筛选的特征波长建立的模型大大减少了建模变量,且模型精度更高,蓝莓糖度最优的PLSR模型测试集相关系数(RP)为0.887 5,均方根误差(RMSEP)为0.395 9,最优DBN模型RP为0.954 2,RMSEP为0.310 5。研究表明,利用SiPLS-UVE进行特征提取,结合深度信念网络方法建立的蓝莓糖度检测模型可以更好地完成蓝莓糖度在线精准分析,该方法有望应用于蓝莓及其他果蔬内部品质检测。 相似文献
14.
可见光光谱检测赣南脐橙糖度的研究 总被引:7,自引:1,他引:7
利用透射光谱测定法获取赣南脐橙的可见光光谱(400~800 nm), 采用多种校正算法, 选取不同的波段范围对透射光谱进行有效信息提取和分析,对比研究了不同因子数时不同校正方法进行糖度快速检测的影响,确定了最佳参比、最佳的波段范围、最佳光谱处理方法和用于快速检测分析的最佳校正方法。实验结果表明: 偏最小二乘法校正模型的预测精度在450~770 nm波段范围内,因子数为7时其糖度的预测精度最好,其预测集的相关系数达到了0.857, 预测标准偏差为0.562。 相似文献
15.
苹果糖度的光谱图像无损检测技术研究 总被引:2,自引:0,他引:2
应用光谱图像技术进行了苹果内部品质无损检测技术的研究。通过采集不同波长(分别为632 nm,650 nm,670 nm,780 nm,850 nm和900 nm)的光谱图像,对所采集的光谱图像灰度分布进行洛伦兹分布(LD)、高斯分布(GD)、指数分布(ED)函数的拟合,通过比较发现洛伦兹分布为最优灰度分布拟合函数。将苹果的糖度与洛伦兹分布函数拟合所得参量分别进行多元线性回归,建立最佳单波长、最佳双波长组合、最佳三波长组合和最佳四波长组合的校正方程,相关系数R分别为0.622、0.776、0.831、0.813。实验表明,利用光谱图像技术无损检测苹果糖度是可行性的,为计算机图像对水果进行内部品质的无损检测提供技术依据。 相似文献
16.
不同贮藏期水蜜桃硬度及糖度的检测研究 总被引:1,自引:0,他引:1
糖度和硬度作为水蜜桃的两个重要指标,决定其内部品质。在运输或售卖期间,水蜜桃果内水分流失,表面开始松软进而腐烂,内部品质发生变化。研究旨在探讨可见/近红外光谱预测水蜜桃不同贮藏期糖度和硬度的可行性,进一步预测水蜜桃的最佳贮藏期。采用漫透射和漫反射方式采集4个贮藏阶段的水蜜桃光谱,并测量糖度和硬度。分析了4个阶段水蜜桃的平均光谱,光谱强度随着贮藏天数增加而不断提高,且在650~680 nm区域内受果皮颜色及色素的变化产生波峰偏移。同时,分析了糖度和硬度的变化,糖度在贮藏期间逐渐提高,硬度在贮藏期间快速下降,最终糖度增加了3.31%,硬度下降了58.8%。采用多元散射校正、S-G卷积平滑、归一化处理及基线校正等预处理方法来减少噪声和误差对光谱的影响,并使用无信息变量消除(UVE)和连续投影算法(SPA)筛选特征波长,最后利用偏最小二乘回归(PLS)分别建立糖度和硬度的预测模型。分析糖度、硬度的PLS回归系数与平均光谱的波形发现,糖度的高回归系数分布在光谱多处,而硬度的该系数均在波峰波谷附近。SPA和UVE筛选的特征波长建立的糖度模型效果不佳,而硬度模型效果良好。结果表明,漫透射和漫反射检测方式下,糖度的最佳预测相关系数(Rp)及预测均方根误差(RMSEP)分别为0. 886,0.727和0.820,1.003,预处理方法分别是多元散射校正、平滑窗口宽度为3的S-G卷积平滑。此外,漫透射建立的硬度SPA-PLS模型,选用15个光谱变量,得到的Rp和RMSEP为0.798和0.976;而漫反射建立的UVE-PLS模型,选用113个光谱变量,得到的Rp和RMSEP为0.841和0.829。可以看出,漫透射方式预测水蜜桃贮藏期间的糖度更佳,而漫反射预测硬度更佳。利用可见/近红外光谱所建立的糖度和硬度预测模型,能够可靠地预测水蜜桃贮藏期内糖度和硬度的变化,对指导采摘、售卖时间和减少腐烂具有一定的参考价值。 相似文献
17.
基于小波变换的水果糖度近红外光谱检测研究 总被引:12,自引:7,他引:12
利用小波变换滤波技术对90个水果样品的近红外光谱信号进行了去噪处理,并结合滤波后重构光谱信号对水果糖度进行逐步线性回归(SMLR)建立其校正模型,通过34个样品的外部检验对校正模型精度进行评价。研究结果表明: 校正模型的预测精度在小波尺度为3时其预测精度最好,预测集的决定系数由原来的0.84提高到0.85, 预测集相对标准误差由原来的6.1% 降为6.0%。因此,使用小波去噪方法有消除原始光谱噪声作用,从而使最终的SMLR模型更具有代表性和稳健性,也提高了品质检测时模型预测精度。 相似文献
18.
河套蜜瓜是我国西北河套地区独具特色的果品,一直深受消费者的喜爱。糖度(sugar content)是衡量蜜瓜品质和成熟度重要指标。采用Maya 2000pro便携式光谱仪和PR-101ɑ便携式数字折光仪获取"金红宝"蜜瓜光谱信息及糖度值,研究了不同特征波长提取方法:逐步多元线性回归(SMLR)、间隔偏最小二乘法(iPLS)、反向区间偏最小二乘法(biPLS)以及联合区间偏最小二乘法(siPLS))对蜜瓜样品模型精度和预测结果的影响。结果表明:采用biPLS特征波长提取方法将全波段光谱均匀分成20个子区间,PLS因子数为14,当剔除其中8个子区间,选择的波长变量数为218时,得到的biPLS模型最佳,对应的校正集和预测集的RMSE分别为0.996 1和1.18。采用biPLS光谱波长筛选方法可以有效地提取蜜瓜糖度的特征波长,提高建模预测能力,实现蜜瓜糖度的快速检测。 相似文献
19.
应用近红外光谱技术快速检测果醋糖度 总被引:7,自引:0,他引:7
为了对果醋糖度值进行快速准确检测,应用近红外光谱技术并结合最小二乘支持向量机分析方法建立了果醋糖度检测模型.应用近红外透射光谱获取五种类型共计300份果醋样本的光谱透射曲线,利用主成分分析方法对原始光谱数据进行降维处理,根据主成分的累计贡献率选取6个主成分.选取的主成分即作为光谱优化特征子集以替代原来复杂的光谱数据.随后将300份果醋样本数据随机分为定标集和预测集,利用最小二乘支持向量机在225个定标集样本数据基础上建立起果醋糖度预测模型,应用此模型对75个预测集样本进行糖度预测.根据预测均方根误差(RMSEP)和预测结果的相关系数(r)对预测模型进行评价,利用此模型得到的样本糖度预测值r=0.993 9,RMSEP=0.363,均达到了较好的预测效果. 相似文献
20.
用遗传算法快速提取近红外光谱特征区域和特征波长 总被引:9,自引:0,他引:9
提出了一种遗传区间偏最小二乘法(GA-iPLS),并用该方法快速提取苹果糖度近红外光谱的特征区域,在此基础上采用遗传偏最小二乘法(GA-PLS)提取苹果糖度近红外光谱的特征波长,进行苹果糖度预测。结果表明,整个光谱等分为40个子区间,遗传区间偏最小二乘法能快速寻找出5个特征子区间(第4,6,8,11,18号);在5个特征子区间的基础上用遗传偏最小二乘法继续优化,从中提取44个特征波长。建立在5个特征子区间和44个特征波长上的偏最小二乘法模型精度均优于全光谱偏最小二乘法模型,对预测集的预测相关系数提高了近10%;且模型得到了很大的简化,用于建模的主因子数减少了7个。这些结果表明,用这两种方法不但可以建立简洁、数据运算量少的模型,还可以快速地提取近红外光谱的特征区域和特征波长。 相似文献