首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   129篇
  国内免费   93篇
化学   177篇
晶体学   1篇
力学   35篇
综合类   20篇
数学   55篇
物理学   252篇
  2024年   8篇
  2023年   14篇
  2022年   23篇
  2021年   13篇
  2020年   16篇
  2019年   17篇
  2018年   13篇
  2017年   14篇
  2016年   9篇
  2015年   24篇
  2014年   23篇
  2013年   21篇
  2012年   16篇
  2011年   19篇
  2010年   23篇
  2009年   22篇
  2008年   26篇
  2007年   18篇
  2006年   24篇
  2005年   18篇
  2004年   13篇
  2003年   22篇
  2002年   12篇
  2001年   21篇
  2000年   12篇
  1999年   13篇
  1998年   15篇
  1997年   8篇
  1996年   13篇
  1995年   11篇
  1994年   8篇
  1993年   2篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1989年   9篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   2篇
  1959年   1篇
排序方式: 共有540条查询结果,搜索用时 890 毫秒
11.
通过关于“普里昂”蛋白病毒疾病的已有临床、医学生理、免疫和化学等方面的现象,讨论了朊病毒当中的部分蛋白氧化损伤和蛋白自由基化学本质。  相似文献   
12.
受体生物传感器的研究进展   总被引:2,自引:0,他引:2  
尹屹梅  林祥钦 《分析化学》2002,30(10):1267-1271
综述了利用各种生物材料中的膜受体蛋白作为分子识别元件的受体生物传感器研究的最新进展。主要从离体受体传感器、细胞受体传感器和神经组织受体传感器3个方面,讨论了它们的特点和存在的问题,并展望了受体生物传感器未来的发展方向。共引用文献42篇。  相似文献   
13.
从药用植物半夏的块茎鲜汁中提取的半夏凝集素(PTL),易化小鼠运动神经末梢的乙酰胆碱(ACh)量子释放,可在人工脂双层形成阳离子通道。本文报道了它对运动神经末梢膜电流的作用。 实验进行于小鼠肋间神经胸三角肌标本,利用神经周膜(perineurium)下记录,观察PTL对神经末梢前区的钠流、来源于神经末梢的三种钾流和两种钙流的影响,结果发现,PTL增大电压依赖快钙(I_(Ca),+),钠(I_(Na))和依Ca~(2+)钾流(I_K,Ca);而对电压依赖快(I_K,f)、慢(I_K,s)钾流却均无可见影响。作用是不可逆的,但PTL的专一结合糖-甘露聚糖可使之逆转。PTL这些作用的总合效应将促进Ca~(2+)内流,提高[Ca]_i,从而易化神经递质释放。据我们所知,这是凝集素影响哺乳类动物运动神经末梢膜电流的第一个报道。  相似文献   
14.
本文对超声引导椎旁神经阻滞治疗带状疱疹后遗神经痛(post-herpetic neuralgia,PHN)的疗效及可行性进行了分析。研究对象为2015年12月~2017年12月于我院就诊的94例PHN患者,按就诊顺序随机均分为两组,对照组给予普瑞巴林常规治疗,观察组在此基础上联合超声引导椎旁神经阻滞治疗,连续治疗4周。本文比较了治疗前、治疗1周、2周、4周后的匹兹堡睡眠质量指数(PSQI)评分、疼痛视觉模拟(VAS)评分,并评价了治疗后的综合疗效,记录了治疗期间发生不良反应情况。结果显示,较治疗前,治疗1周、2周、4周后两组VAS评分均逐渐降低,且观察组治疗后各时间点的VAS评分显著低于对照组,差异具有统计学意义(P<0.05);较治疗前,两组治疗1周、2周、4周后PSQI评分均逐渐降低,且观察组治疗后各时间点的PSQI评分显著低于对照组,差异具有统计学意义(P<0.05);观察组治疗总有效率为89.36%,对照组为78.72%,观察组显著高于对照组,差异具有统计学意义(P<0.05);两组治疗期间各项不良反应发生率差异无统计学意义(P>0.05)。本文证实了超声引导椎旁神经阻滞治疗PHN能显著改善患者神经疼痛症状,提升睡眠质量,同时具有安全性保障。  相似文献   
15.
16.
目的研究连续臂丛神经阻滞镇痛对断指再植术后再植指血流动力学的影响,探讨其缓解血管痉挛、增加血流量的可行性。方法将60例急诊行断指再植术患者按随机数字表法分为术后连续臂丛神经阻滞镇痛组(CA组)和对照组(NA组),每组30例。观察两组患者再植指术后血管痉挛、血管栓塞和指体坏死发生例数并计算再植指成活率,记录两组术后即刻(T1)、术后24h(T2)再植指固有动脉血流动力学参数及动脉内径(AD)、远指端血氧饱和度(SpO2)和温度(Ts)变化。结果断指再植术后成活率CA组高于NA组,血管痉挛、血管栓塞和指体坏死发生率CA组均低于NA组,差异均有统计学意义(均P<0.05)。在T2时CA组各项血流动力学参数、AD、SpO2、Ts均高于NA组,阻力指数(RI)低于NA组,差异均有统计学意义(均P<0.05)。结论术后连续臂丛神经阻滞镇痛可以缓解再植指固有动脉痉挛,增加指体血流量,提高了断指再植的成功率。  相似文献   
17.
随着人口老龄化进程的发展,阿尔茨海默症(AD)已成为威胁中国和世界人口健康和经济的重大疾病.本文综述了近年来AD病理的分子机制的新进展,分析了其中金属代谢的意义.研究发现,在AD进程中,围绕淀粉样斑块(AP)和神经缠绕斑(NFT)的形成,多因素相互联系并发挥作用,这些主要因素包括金属内稳态、胰岛素抵抗、神经炎症、线粒体和血脑屏障改变等.与AD病理过程密切相关的主要蛋白质均参与了金属元素的生理代谢过程,而细胞金属离子的内稳态失衡加剧了AD病理的恶化.金属药物在AD诊断和治疗中可能具有以下的发展潜力:(1)AD早期诊断探针;(2)调节金属内稳态的配体和/或微量元素补充;(3)抗糖尿病金属配合物;(4)神经元和血脑屏障(BBB)保护金属药物.  相似文献   
18.
<正>中科院上海生命科学研究院健康科学研究所乐卫东小组发现,纳米材料氧化石墨烯在胚胎干细胞向多巴胺神经元分化过程中可发挥重要作用。相关研究日前发表于《纳米医学》。中脑多巴胺能神经元的退行性死亡是帕金森氏症的最显著特征,通过干细胞诱导多巴胺神经元分化并进行细胞移植治疗已经成为潜在的帕金森氏症治疗方法。然而,学界对于胚胎干细胞向多巴胺神  相似文献   
19.
Optogenetics is a neuromodulation technology that combines light control technology with genetic technology, thus allowing the selective activation and inhibition of the electrical activity in specific types of neurons with millisecond time resolution. Over the past several years, optogenetics has become a powerful tool for understanding the organization and functions of neural circuits, and it holds great promise to treat neurological disorders. To date, the excitation wavelengths of commonly employed opsins in optogenetics are located in the visible spectrum. This poses a serious limitation for neural activity regulation because the intense absorption and scattering of visible light by tissues lead to the loss of excitation light energy and also cause tissue heating. To regulate the activity of neurons in deep brain regions, it is necessary to implant optical fibers or optoelectronic devices into target brain areas, which however can induce severe tissue damage. Non- or minimally-invasive remote control technologies that can manipulate neural activity have been highly desirable in neuroscience research. Upconversion nanoparticles (UCNPs) can emit light with a short wavelength and high frequency upon excitation by light with a long wavelength and low frequency. Therefore, UCNPs can convert low-frequency near-infrared (NIR) light into high-frequency visible light for the activation of light-sensitive proteins, thus indirectly realizing the NIR optogenetic system. Because NIR light has a large tissue penetration depth, UCNP-mediated optogenetics has attracted significant interest for deep-tissue neuromodulation. However, in UCNP-mediated in vivo optogenetic experiments, as the up-conversion efficiency of UCNPs is low, it is generally necessary to apply high-power NIR light to obtain up-converted fluorescence with energy high enough to activate a photosensitive protein. High-power NIR light can cause thermal damage to tissues, which seriously restricts the applications of UCNPs in optogenetic technology. Therefore, the exploration of strategies to increase the up-conversion efficiency, fluorescence intensity, and biocompatibility of UCNPs is of great significance to their wide applications in optogenetic systems. This review summarizes recent developments and challenges in UCNP-mediated optogenetics for deep-brain neuromodulation. We firstly discuss the correspondence between the parameters of UCNPs and employed opsins in optogenetic experiments, which mainly include excitation wavelengths, emission wavelengths, and luminescent lifetimes. Thereafter, we introduce the methods to enhance the conversion efficiency of UCNPs, including optimizing the structure of UCNPs and modifying the organic dyes in UCNPs. In addition, we also discuss the future opportunities in combining UCNP-mediated optogenetics with flexible microelectrode technology for the long-term detection and regulation of neural activity in the case of minimal injury.  相似文献   
20.
A human brain is composed of a large number of interconnected neurons forming a neural network. To study the functional mechanism of the neural network, it is necessary to record the activity of individual neurons over a large area simultaneously. Brain-computer interface (BCI) refers to the connection established between the human/animal brain and computers/other electronic devices, which enables direct interaction between the brain and external devices. It plays an important role in understanding, protecting, and simulating the brain, especially in helping patients with neurological disorders to restore their impaired motor and sensory functions. Neural electrodes are electrophysiological devices that form the core of BCI, which convert neuronal electrical signals (carried by ions) into general electrical signals (carried by electrons). They can record or interfere with the state of neural activity. The Utah Electrode Array (UEA) designed by the University of Utah is a mainstream neural electrode fabricated by bulk micromachining. Its unique three-dimensional needle-like structure enables each electrode to obtain high spatiotemporal resolution and good insulation between each other. After implantation, the tip of each electrode affects only a small group of neurons around it even allowing to record the action potential of a single neuron. The availability of a large number of electrodes, high quality of signals, and long service life has made UEA the first choice for collecting neuronal signals. Moreover, UEA is the only implantable neural electrode that can record signals in the human cerebral cortex. This article mainly serves as an introduction to the construction, manufacturing process, and functioning of UEA, with a focus on the research progress in fabricating high-density electrode arrays, wireless neural interfaces, and optrode arrays using silicon, glass, and metal as that material of construction. We also discuss the surface modification techniques that can be used to reduce the electrode impedance, minimize the rejection by brain tissue, and improve the corrosion resistance of the electrode. In addition, we summarize the clinical applications where patients can control external devices and get sensory feedback by implanting UEA. Furthermore, we discuss the challenges faced by existing electrodes such as the difficulty in increasing electrode density, poor response of integrated wireless neural interface, and the problems of biocompatibility. To achieve stability and durability of the electrode, advancements in both material science and manufacturing technology are required. We hope that this review can broaden the scope of ideas for the development of UEA. The realization of a fully implantable neural microsystem can contribute to an improved understanding of the functional mechanisms of the neural network and treatment of neurological diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号