首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   241篇
  国内免费   120篇
化学   231篇
晶体学   252篇
力学   52篇
综合类   9篇
数学   7篇
物理学   216篇
  2024年   7篇
  2023年   12篇
  2022年   18篇
  2021年   21篇
  2020年   12篇
  2019年   29篇
  2018年   31篇
  2017年   36篇
  2016年   35篇
  2015年   46篇
  2014年   46篇
  2013年   42篇
  2012年   38篇
  2011年   29篇
  2010年   29篇
  2009年   31篇
  2008年   30篇
  2007年   24篇
  2006年   32篇
  2005年   28篇
  2004年   29篇
  2003年   23篇
  2002年   16篇
  2001年   16篇
  2000年   13篇
  1999年   7篇
  1998年   5篇
  1997年   7篇
  1996年   8篇
  1995年   9篇
  1994年   3篇
  1993年   8篇
  1992年   9篇
  1991年   14篇
  1990年   10篇
  1989年   9篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
排序方式: 共有767条查询结果,搜索用时 15 毫秒
31.
一步合成二甲醚催化剂烧结失活和原位再生的研究   总被引:1,自引:0,他引:1  
采用共沉淀沉积法制备了CuOZnOAl2O3/γ Al2O3 HZSM 5复合催化剂,考察了其对CO加氢直接合成二甲醚的催化性能,研究了催化剂的失活和再生,并用H2-TPR、XRD、TPO、N2O化学吸附等表征方法对反应前后和再生后催化剂的物化性质进行了表征。结果表明,一步合成二甲醚催化剂的失活主要是由于活性位Cu晶粒的烧结长大;反应温度和原料气的组成是影响催化剂失活的因素,在低于220℃下,以N2/H2/CO/CO2为原料气会显著降低催化剂的失活速率。研究使用的氧化还原循环的再生方法能够使Cu晶粒发生再分散,并使失活的催化剂恢复了75%以上的活性。  相似文献   
32.
烧结型NdFeB永磁材料表面磷化膜的制备及耐蚀性能研究   总被引:1,自引:0,他引:1  
研究在烧结型NdFeB永磁材料表面形成无毒、无污染的磷化膜之方法来解决其表面的腐蚀问题。讨论了前处理工艺、磷化液组成、磷化成膜温度、磷化成膜时间等因素对磷化膜制备的影响。以OM、SEM、腐蚀浸泡实验、电化学测试技术等作为表征手段,测试分析了磷化膜的成膜性及耐蚀性能,确定了最佳成膜工艺参数。结果表明:采用新研制的磷化配方及工艺在烧结型NdFeB永磁材料表面能形成致密的磷化膜层,该磷化膜层可有效地对烧结型NdFeB永磁材料进行腐蚀保护。  相似文献   
33.
Pt-BaO催化剂的NOx储存-还原化学及结构-性能关系   总被引:1,自引:0,他引:1  
NOx储存-还原(NSR)技术是目前稀燃汽车尾气中NOx消除的最有前景的催化技术之一,NSR催化过程中稀燃/富燃条件的交替运行、NSR催化剂上化学计量反应与催化反应的耦合赋予了NSR催化过程迥异于常规连续流动气固相催化反应的特点.本文首先介绍了目前人们对Pt-BaO催化剂上NSR基本化学过程的认识;在此基础上,结合本研...  相似文献   
34.
提出了电感耦合等离子体原子发射光谱法测定烧结增效剂中主成分三氧化二硼和二氧化锰含量的方法。用盐酸-硝酸混合溶液溶解样品,选择波长257.610,249.773 nm两条谱线分别作为测定硼和锰的分析线,采用背景校正来扣除干扰。方法用于烧结增效剂样品分析,测定结果与化学法测定值相一致。  相似文献   
35.
本文用无压烧结法成功制备了高硬度的立方氧化锆陶瓷,研究了氧化锆陶瓷的物相,Vickers硬度,显微结构,相对密度等性能,主要分析了TiO2添加量对Zr0.8Ce0.2O2陶瓷硬度和相对密度的影响。结果表明:烧结助剂TiO2可以有效抑制陶瓷晶粒异常生长,加快气孔排除,促进氧化锆陶瓷烧结致密化,提高陶瓷硬度。最高维氏硬度为20.2 GPa,最高相对密度达到了99.8%。  相似文献   
36.
80%以上的工业生产过程涉及催化,如化工生产、能源转换、制药和废物处理等等.催化剂的使用显著提高了生产效率,降低了生产成本,为国民经济、地球环境和人类文明的可持续发展做出了很大贡献.为了满足日益增长的生产需求和最大的经济效益,开发高效、稳定、低成本的新型催化剂已成为当务之急.金属中心负载在载体上的负载型金属催化剂因其较好的催化活性和相对较低的金属用量而受到广泛关注.研究发现,负载型结构可增强传热和传质并增加活性金属中心的分散度,从而影响催化性能.此外,负载金属的颗粒尺寸对催化剂的性能有很大影响.迄今为止,科学家们一直在通过减小金属颗粒尺寸和提高原子利用效率来提高催化剂的活性.原子级尺寸的颗粒通常表现出与大尺寸颗粒显着不同的物理和化学性质,而当活性位点的尺寸缩小到单个原子时,单原子催化剂的概念应运而生.对于单原子催化剂,金属原子中心通过配位被载体中的缺陷锚定,从而调整金属原子的电子云分布.这种配位调整使得单原子催化剂拥有与传统催化剂不同的性能.作为催化领域的新前沿,单原子催化剂已经在许多催化反应中表现出前所未有的活性和选择性.然而,许多报道的单原子催化剂在高温环境或长期催化应用中容易受到奥斯特瓦尔德熟化过程的影响,从而导致催化剂烧结和失活.而烧结的原因在于金属原子和载体之间较弱的相互作用.失活催化剂的再生和回收将大大增加工业生产的时间和经济成本.因此,开发具有优异热稳定性的单原子催化剂以满足工业需求是十分必要的.本综述首先总结了近年来关于热稳定型单原子催化剂合成方法的基础研究,并从原子尺度上分析了这些方法所构建的金属中心的结构形态和配位环境.此外,结合近些年的研究中新的表征技术与理论计算手段解释了热稳定性的来源.重点讨论了热稳定单原子催化剂的实际催化应用.分析了热稳定单原子催化剂在热催化应用中的独特作用机理、并尝试为确定催化过程中真正的活性中心以及通过原子级调控手段进行高活性热稳定单原子催化剂的合成提供理论指导.最后总结了热稳定单原子催化剂发展的主要问题,并简要分析了单原子催化领域的研究挑战和发展前景.  相似文献   
37.
通过共沉淀法制备前驱体,随后在900℃下经不同时长烧结得到了层状LiMn_xCo_yO_2。X射线衍射、扫描电镜和透射电镜的研究结果表明,层状LiMn_xCo_yO_2的晶体结构是菱面体点阵,空间群是R3m,点阵常数与LiCoO_2非常接近。不同烧结时长下得到的样品在扫描电镜下均呈球状,随着烧结时间延长,球形规整度变得更好。对不同样品的电化学性能测试表明,烧结时间越长,样品中Mn的相对含量越高,其首次充放电比容量和循环性能越好。  相似文献   
38.
选取晋城无烟煤和麦秆作为研究对象,利用压差法烧结温度测定装置测量不同灰化温度下煤和麦秆混合灰的烧结温度,再利用SEM-EDS以及XRD对灰样进行烧结特性分析。结果表明,不论灰化温度高低,随着麦秆的添加,煤和麦秆混合灰的烧结温度都呈现降低趋势,其降低幅度略有差别。灰化温度较低时,煤和麦秆混合灰的烧结温度低于灰化温度较高情况下混合灰的烧结温度。SEM-EDS分析表明,低温灰化得到的样品中出现较多不规则的纤维结构;较高温度下获得的灰样中出现较多致密的球状颗粒,这表明矿物质发生熔融形成球状颗粒。XRD分析表明,低温灰化烧结后的煤和麦秆混合灰样中因含有较多的含钾等碱金属系助融矿物质,导致混合灰样的烧结温度降低。然而,像钙长石等含钙矿物质本身具有较高的熔点,因此,在1 100℃时混合灰样具有较高的烧结温度。  相似文献   
39.
近年来钢铁行业发展迅速,同时环境污染问题日益突出,烧结烟气污染物主要是硫化物和氮化物等,目前烧结工序强制性配套了脱硫装置,烧结烟气中硫化物能够达到排放要求。由于工业上使用的脱硝装置成本过高及脱硝方式的不成熟[1],大部分烧结工序都没有安装氮氧化物脱除装置。而烧结过程中一般使用焦粉为燃料,如果焦粉中氮含量过高会导致烧结烟气中氮氧化物过高,如果氮氧化物含量超标则会导致烧结停机,对生产运行造成较大影响,因此对焦粉中氮含量的监测尤为重要。  相似文献   
40.
采用传统固相法制备了Pb(Sb1/3 Mn2/3)0.05Zr0.47Ti0.48 O3 (PMS-PZT)压电陶瓷.利用XRD、SEM和EDS等研究PMS-PZT陶瓷体系在烧结过程中形成的过渡液相和形成过渡液相温度(1100℃)附近的升温速率对陶瓷结构、压电和介电性能的影响.结果表明:不同烧结温度下,所有样品均为单一的钙钛矿四方相,过渡液相不会对相的结构有影响,但是当烧结温度较低时,过渡液相在烧结后期以玻璃相在晶界附近富集,对陶瓷的压电和介电性能有很大影响.随着烧结温度和升温速率的升高,PMS-PZT晶粒尺寸增大,晶粒均匀性和规则性得以改善,晶化质量得到提高;d33测试和阻抗分析测试结果表明PMS-PZT样品在1100℃附近以7 ℃·min-1升温速率并在1250℃烧结时具有最好的压电和介电性能:d33 =313 C/N,kp=0.59,Qm=1481,εr=1437,tanδ=0.53;.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号