首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1312篇
  免费   313篇
  国内免费   53篇
化学   55篇
晶体学   6篇
力学   26篇
综合类   13篇
数学   11篇
物理学   1567篇
  2024年   13篇
  2023年   47篇
  2022年   53篇
  2021年   45篇
  2020年   26篇
  2019年   35篇
  2018年   19篇
  2017年   29篇
  2016年   30篇
  2015年   42篇
  2014年   91篇
  2013年   39篇
  2012年   76篇
  2011年   42篇
  2010年   58篇
  2009年   59篇
  2008年   95篇
  2007年   61篇
  2006年   63篇
  2005年   65篇
  2004年   96篇
  2003年   65篇
  2002年   63篇
  2001年   48篇
  2000年   57篇
  1999年   28篇
  1998年   45篇
  1997年   35篇
  1996年   40篇
  1995年   28篇
  1994年   32篇
  1993年   29篇
  1992年   35篇
  1991年   36篇
  1990年   22篇
  1989年   16篇
  1988年   3篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
排序方式: 共有1678条查询结果,搜索用时 15 毫秒
31.
为解决传统光纤传像系统中分辨率受传像光纤像素数量制约而导致系统整体分辨率提升困难的问题,提出一种基于塑料传像光纤阵列的多孔径高分辨成像技术,利用传像光纤阵列及图像拼接技术突破像素数难以提升的瓶颈。通过高分辨、小截面的传像光纤组合阵列提升像素,结合微透镜阵列重叠成像的效果,实现光纤阵列成像的完整性,有望使光纤传像系统像素数达到百万数量级。通过建立光纤传像系统性能指标与光学参数之间的关系,仿真设计一款室内监控远心镜头作为传像系统的主镜头,并设计微透镜阵列作为主镜头与传像光纤阵列之间的中继镜头。仿真结果表明,主镜头与微透镜阵列均满足传像光纤性能需求。实验测试结果表明,系统含有40万有效像素,分辨率为40 lp/mm,图像输出完整,该成像系统设计具有良好的可行性,对光纤传像系统的分辨率提升具有重要的实际参考意义。  相似文献   
32.
吕洪发  王惠南 《光子学报》2006,35(12):1846-1849
根据1/2波节自聚焦(GRIN)透镜中光的传输特性,提出了一种新颖的测量微小角位移的模型,通过对模型中光线传输和几何关系的理论分析,推导了待测角位移与光耦合效率之间的传递函数.针对模型对测量范围的限制,提出了一种可行的拓宽测量范围的方法.研究结果表明,该模型不但测量范围宽,而且测量准确度高,线性度好.  相似文献   
33.
金新华  郑晓东  王政 《光子学报》2006,35(12):1964-1968
研究了用多角形棒状透镜产生高均匀性正方形和圆形照明的最佳结构参量.结果表明,对于正方形棒状透镜,输出端的照明均匀性随透镜的长度振荡变化,在某些特定长度达到极小值.对于圆形照明面积,比较了从三角到八角的六种多边形.利用三角形积分透镜可以获得最佳的照明均匀性,但光能利用率相对较低,六角形积分透镜可同时获得较高的照明均匀性和光能利用率.  相似文献   
34.
锥形透镜光纤聚焦特性研究   总被引:2,自引:2,他引:2  
刘旭  陈麟  蔡纯  肖金标  张明德  孙小菡 《光学学报》2006,26(8):182-1186
锥形透镜光纤(TLF)是实现光纤与平面光波光路(PLC)芯片高效耦合的核心元件。了解和掌握其聚焦特性是指导平面光波光路尾纤封装技术的关键。给出了表征锥形透镜光纤聚焦特性的两个参量出射光斑直径和远场发散角的理论分析模型,其误差小于1.14%;采用光束传播法数值模拟了锥形透镜光纤中的光波传输和模斑的演化,确定了锥形透镜光纤端面出射光斑的大小;优化锥形透镜光纤结构参量为:拉锥长度300μm,锥角0.733°,透镜曲率半径13.485μm;建立了基于数字摄像机的锥形透镜光纤出射光场测试系统,提出了物理光学反向推演法,计算出锥形透镜光纤聚焦光斑尺寸和远场发散角。理论与实验结果有着良好的一致:对于相同结构参量的锥形透镜光纤,实验反推法得到的出射光斑尺寸与理论值相比误差为3.15%,远场发散角误差为3.67%。  相似文献   
35.
李强  王三文  姚胜利  米磊  高凤 《光子学报》2006,35(9):1305-1308
依据双面研磨抛光原理,提出了加工自聚焦透镜平面和斜面辅助工装设计.从工艺技术特点和生产实际过程等方面对设计的工装使用情况进行分析验证.多次大批量加工实践证明,该辅助工装的设计完全满足了自聚焦透镜高效批量加工技术要求,简化整个生产线工艺,减少工艺流程时间,降低材辅料的消耗成本,从而验证了双面研磨抛光法是一种实用的加工自聚焦透镜的新方法.  相似文献   
36.
We report on a radially polarized and passively Q-switched Nd:YAG/Cr4+:YAG laser.The bulk Nd:YAG crystal is bonded with two undoped YAG crystal end caps to weaken the thermal lens e?ect and thus,enhance the extraction of stored energy in the bulk gain material.In the absence of active water cooling,the average laser power reaches 383 mW with 33% slope efficiency,and the laser pulse achieves 1.457-W peak power,18.9-ns duration,and 13.9-kHz repetition rate with 97.6% polarization purity.  相似文献   
37.
在端面抽运固体激光器中,就如何改善在高抽运功率时输出激光的光束质量,提出一种激光器的设计方法。在激光器谐振腔中放入多根掺杂浓度不同的激光介质,利用激光介质内部产生的热透镜控制抽运光和基模振荡光的空间分布,并且最大限度地使抽运光的分布区和基模振荡光分布区重叠,实现抽运光与基模振荡光在空间上高度匹配,进而提高抽运光能量的利用效率和振荡光的光束质量。实验表明,在不同抽运功率下,抽运光和基模振荡光在晶体内部的光斑的空间分布可通过热透镜加以控制。在端面抽运功率200 W附近时,实现了抽运光与基模振荡光较高程度匹配,光束质量因子M2由14.7改善为4.1。  相似文献   
38.
在飞秒激光随机扫描双光子显微成像系统中使用宽带二维声光偏转器扫描飞秒激光,可以增大扫描角度至74 mrad,增大双光子显微成像范围。但宽带二维声光偏转器在大角度扫描时引入的色散较大,造成成像范围边缘的光斑严重畸变,边缘光斑直径达2.3 μm,影响边缘视场的成像质量。为了提高成像质量,设计了一种新的色散补偿方法,基于衍射透镜组成的开普勒望远系统,可以同时补偿不同扫描角度的不同色散。经过色散补偿后成像边缘的光斑直径小于1 μm,使系统获得大范围扫描成像的同时,所有扫描角度的色散都能够得到很好的补偿,在整个视场范围内光斑直径小于1 μm,实现更均匀的荧光激发,均匀成像。  相似文献   
39.
董文娟  石琳  孟双  夏磊  左慧  丁桂林 《应用光学》2017,38(5):820-825
针对目前舞台灯的光束角可变范围小、照度均匀性差等缺点,在全反射式透镜结构的基础上,基于变焦透镜组原理,设计出一种采用单颗透镜的变焦透镜系统。该系统包括准直透镜和可移动的调焦片,并且使用SolidWorks软件,依次在准直透镜的镜面上进行不规则六边形复眼圆周填充阵列和调焦片的两侧进行六边形复眼圆周阵列设计。经过光学软件LightTools仿真以及实际光照效果检测,此款透镜在匹配S2WP的全彩LED光源后,上述结构能够有效解决RGBW全彩LED光源在舞台灯照明上均匀性和混光差的难题。此外,设计出的舞台灯变焦透镜的光学效率高达87%,可在0 mm~15 mm的调焦范围内,光束角(1/2光强角)的可变范围为4°~53°。  相似文献   
40.
由于衍射极限的存在,传统光学透镜成像分辨率理论上只能达到入射光波长的一半。通过恢复和增强携带物体细部特征信息的高频倏逝波,基于表面等离子体的平面金属透镜有望突破这种光学衍射极限,实现超分辨成像。本文对平面薄膜式与纳米结构式两类平面金属透镜进行了综述,详细介绍了若干典型平面金属透镜的结构设计、工作机理及其聚焦性能,并对其特点与存在的问题进行了分析与讨论。由于光波在金属中传播时存在一定损耗,如何更高效地增强高频倏逝波信号并转换成传播波,使其参与成像,以更好地实现远场超分辨成像,以及如何进一步增大近场超高分辨率聚焦光斑焦深以及减小远场聚焦光斑尺寸,是表面等离子体平面金属透镜进一步研究的重点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号