全文获取类型
收费全文 | 271篇 |
免费 | 104篇 |
国内免费 | 29篇 |
专业分类
化学 | 31篇 |
晶体学 | 2篇 |
力学 | 21篇 |
综合类 | 12篇 |
数学 | 102篇 |
物理学 | 236篇 |
出版年
2024年 | 11篇 |
2023年 | 14篇 |
2022年 | 11篇 |
2021年 | 12篇 |
2020年 | 14篇 |
2019年 | 10篇 |
2018年 | 15篇 |
2017年 | 10篇 |
2016年 | 14篇 |
2015年 | 25篇 |
2014年 | 37篇 |
2013年 | 22篇 |
2012年 | 19篇 |
2011年 | 22篇 |
2010年 | 18篇 |
2009年 | 15篇 |
2008年 | 14篇 |
2007年 | 17篇 |
2006年 | 18篇 |
2005年 | 17篇 |
2004年 | 4篇 |
2003年 | 9篇 |
2002年 | 5篇 |
2001年 | 2篇 |
2000年 | 5篇 |
1999年 | 3篇 |
1998年 | 4篇 |
1997年 | 8篇 |
1996年 | 7篇 |
1995年 | 6篇 |
1994年 | 1篇 |
1993年 | 9篇 |
1992年 | 1篇 |
1991年 | 5篇 |
排序方式: 共有404条查询结果,搜索用时 15 毫秒
81.
像面数字全息是数字全息技术中常用的测量和成像方式,它通常采用离散傅里叶变换和频率滤波的方法进行物光波的重建.本文讨论了这些算法对重建相位的影响.首先分析了频谱泄露对于相位误差的影响,结果表明当采样周期为整数时,重建相位误差很小,因此具有极高的相位重建精度;而当不满足整周期采样时,相位重建误差有了明显的增加.为了改善频谱泄露所引起的相位误差,采用Hanning函数对数字全息图进行了预处理,结果表明Hanning窗的加入能够有效地提高重建相位的准确程度. 相似文献
83.
84.
针对城市物流配送优化研究在客户服务时间窗和货物装载方式合理结合方面存在的不足,考虑物流配送车厢货物装载方式与客户访问序列相关的特征对车厢空间进行合理的区域划分。首先,构建了包含配送中心的固定成本、配送车辆的运输成本、维修成本、租赁成本和违反时间窗惩罚成本的物流运营成本最小化和配送车辆空间利用率最大化的双目标优化模型;然后,提出一种结合遗传算法(GA)全局搜索能力和禁忌搜索算法(TS)局部搜索能力的GA-TS混合算法求解模型;最后,结合重庆市某配送中心的三维装载物流配送实例数据进行了优化计算,实验结果给出了带时间窗的三维装载物流配送路径优化方案,并进行了不同车厢空间分区模式下平均装载率、物流运营成本和车辆使用数的比较分析。研究表明,当客户需求货物种类数与车辆的空间区域划分数相等且按货物类型进行区域划分时,物流运营成本最小,配送车辆使用数最少和车辆平均装载率最高。 相似文献
85.
利用CST PIC计算了基于双排矩形波导慢波结构的W波段行波管的注波互作用,在采用10 kV,70 mA的电子注的条件下,在92~97 GHz范围内,输出功率大于35 W,增益大于30 dB,电子效率约为5%。即使在10 kV较低的电压下,双排矩形波导慢波结构的尺寸仍然较大,有利于降低制造难度。提出了一种基于电火花线切割的加工制造工艺,成功制造了双排矩形波导慢波结构部件。在92~97 GHz范围内对所需盒形窗和电子枪进行了计算机模拟,设计、加工了盒形窗和电子枪的相关零件,制造了相关部件。将慢波结构部件和输能窗部件组装起来进行了冷测,驻波比在90~100 GHz范围内小于2.067。 相似文献
86.
87.
微层裂是冲击波物理领域的重要基础问题,在工程上具有重要应用价值。近年来用于诊断样品多层层裂的传统Asay窗技术被用于诊断微层裂,但对其诊断能力和信号特征认识仍存在严重不足。为此,通过波系分析,揭示出在薄飞片击靶的微层裂实验中样品破碎存在1个“痂片”特征区、2个微层裂特征区以及1个“残体”特征区。实验表明,在样品窗口间隙合适的条件下,Asay窗不仅能够有效区分这些不同特征分区,而且能够灵敏探测样品表面发射的高速微喷粒子,从而实现对样品连续破碎过程的精密诊断。 相似文献
88.
89.
为满足微波管放大器对宽频段输入窗的需求,并保证馈源的真空密封需求,提出并设计了一种适用于宽频段微波放大器的同轴输入窗。该宽频段同轴输入窗采用渐变圆环形陶瓷,材料介电常数为9.3,窗片厚度为2.5 mm, 内径为2.14 mm,外径为5 mm,渐变段长度为6.5 mm。利用三维高频电磁仿真软件CST对其建模分析,并对同轴内外结构尺寸和陶瓷渐变结构进行优化仿真,得出该宽频带同轴输入窗能够在10~45 GHz频带内实现插入损耗小于0.5 dB。 相似文献
90.
以S波段高功率盒型窗为对象,采用Monte Carlo模拟方法对盒型窗内的次级电子倍增效应进行研究,探索次级电子的倍增规律。模拟得到了盒型窗内TE11模和TM11模共同作用下,两种陶瓷窗片表面次级电子倍增活跃的区域随传输功率的变化特点。在低传输功率下,次级电子仅在未镀膜窗片表面被激励,并以双面倍增的方式在金属法兰与镀膜窗片相对应的区域增长;在较高的传输功率下,窗片表面的次级电子将以单面倍增的方式活跃在窗片表面与波导口相对的区域。传输功率的升高使得镀膜窗片表面的次级电子倍增活跃区域转移到矩形波导窄边对应的区域,并加剧了未镀膜窗片表面的局部倍增效应。 相似文献