全文获取类型
收费全文 | 7962篇 |
免费 | 1644篇 |
国内免费 | 3084篇 |
专业分类
化学 | 7925篇 |
晶体学 | 483篇 |
力学 | 466篇 |
综合类 | 192篇 |
数学 | 330篇 |
物理学 | 3294篇 |
出版年
2024年 | 54篇 |
2023年 | 253篇 |
2022年 | 358篇 |
2021年 | 340篇 |
2020年 | 252篇 |
2019年 | 327篇 |
2018年 | 197篇 |
2017年 | 293篇 |
2016年 | 305篇 |
2015年 | 343篇 |
2014年 | 599篇 |
2013年 | 520篇 |
2012年 | 506篇 |
2011年 | 535篇 |
2010年 | 494篇 |
2009年 | 489篇 |
2008年 | 587篇 |
2007年 | 520篇 |
2006年 | 546篇 |
2005年 | 571篇 |
2004年 | 505篇 |
2003年 | 496篇 |
2002年 | 442篇 |
2001年 | 387篇 |
2000年 | 315篇 |
1999年 | 300篇 |
1998年 | 290篇 |
1997年 | 239篇 |
1996年 | 238篇 |
1995年 | 230篇 |
1994年 | 215篇 |
1993年 | 173篇 |
1992年 | 210篇 |
1991年 | 147篇 |
1990年 | 142篇 |
1989年 | 120篇 |
1988年 | 45篇 |
1987年 | 31篇 |
1986年 | 27篇 |
1985年 | 19篇 |
1984年 | 13篇 |
1983年 | 13篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1959年 | 1篇 |
1951年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
831.
建立了固相萃取-超高效液相色谱-电喷雾串联质谱(SPE-UPLC-ESI MS/MS)联用方法,定量测定尿样中的麻黄碱和N-甲基麻黄碱。样品经Oasis MCX柱提取、纯化和富集后,采用电喷雾(ESI)离子源电离,正离子多反应监测(MRM)模式质谱进行定性和定量分析。麻黄碱和N-甲基麻黄碱在0.0250~2.50 μg/L质量浓度范围内线性关系良好,线性相关系数分别为0.9998和0.9992,提取回收率高于80%,提取效率的RSD小于5.0%,检出限均达到0.01 μg/L,可大大延长尿样检材中麻黄碱和N-甲基麻黄碱的检测周期。结果表明,该方法快速、准确,为尿液中痕量麻黄碱和N-甲基麻黄碱的分析提供了灵敏的分析方法。 相似文献
832.
利用预乳化乳液法制备了不同单体配比的聚(甲基丙烯酸甲酯-co-甲基丙烯酸-co-甲基丙烯酸羟乙酯)(P(MMA-co-MAA-co-HEMA))微凝胶分散液;采用透射电子显微镜、动态光散射仪研究了微凝胶的微观形态、粒径大小及其溶胀率;利用试管倒转法对微凝胶分散液的凝胶化相转变行为进行了研究,借助椎板流变仪考察了所形成胶态凝胶的储能模量与单体配比、微凝胶分散液浓度和温度的关系.结果表明,所制备的微凝胶的数均粒径为90 nm左右,当MMA与MAA的投料质量不变时,随着HEMA含量的增加,分散液凝胶化所需的临界最小浓度增大,临界最大pH值减小,胶态凝胶的储能模量增加.当保持单体MMA与HEMA的投料质量不变时,随着单体MAA投料质量的增多,微凝胶的数均粒径和溶胀率增大,胶态凝胶的储能模量先升高后降低;当MAA占单体总摩尔数的25%时,浓度为15 wt%的微凝胶分散液在扫描频率为100 rad/s时,胶态凝胶的储能模量最高可达2×104Pa.这类微凝胶分散液在组织工程支架材料方面有潜在的应用价值. 相似文献
833.
本文以N-(3-溴丙基)邻苯二甲酰亚胺合成为模板反应,研究了相转移催化无溶剂合成N-(ω-溴烷基)邻苯二甲酰亚胺的影响因素,实验证实相转移催化剂及其用量、催化剂K2CO3的用量等对反应的影响明显,得到N-(3-溴丙基)邻苯二甲酰亚胺的优化合成条件为:反应物配比为PA∶C3Br2∶K2CO3∶TBAB=1∶2∶4∶0.2,反应温度80℃,反应时间1h,N-(3-溴丙基)邻苯二甲酰亚胺产率为92%。在相同反应条件下,N-(ω-溴烷基)邻苯二甲酰亚胺的产率随α,ω-二溴烷烃的烷基链长度增加而降低。 相似文献
834.
以氢化松香为原料、乙醇胺为有机胺、乙酸乙酯为溶剂,在超声波辅助下进行胺化反应制备氢化枞酸乙醇胺盐,再经萃取、重结晶和酸化得到氢化枞酸,采用正交试验考察了超声功率、搅拌转速、反应温度、反应时间对氢化枞酸纯度的影响,结果表明,影响氢化枞酸纯度因素按显著程度依次为反应温度>反应时间>超声波功率>搅拌转速,确定了最佳的胺化反应条件为:反应温度40℃、反应时间40min、超声波功率400W、搅拌转速400r/min,所得氢化枞酸的纯度为94.5%。采用GC、GC-MS、FT-IR、熔点仪和旋光仪对氢化枞酸产品进行了分析鉴定。 相似文献
835.
以白藜芦醇苷(POL)为模板分子,分别以丙烯酰胺(AM)、4-乙烯基吡啶(4-VP)、甲基丙烯酸羟乙酯(HEMA)、甲基丙烯酸(MAA)为功能单体,二甲基丙烯酸乙二醇酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,采用本体聚合法制备白藜芦醇苷分子印迹聚合物。采用静态平衡结合实验研究了印迹聚合物对模板分子及不同底物的识别性能。结果表明,以丙烯酰胺为功能单体的印迹聚合物(MIP1)对模板分子的识别性能最好,其次是以4-VP为功能单体的聚合物(MIP2),以HEMA为功能单体的聚合物(MIP3)以及以MAA为功能单体的聚合物(MIP4)的分子识别性能较差。表明功能单体与模板分子之间相互作用的强弱对MIP的识别能力有较大的影响。静态平衡结合法以及Scatchard分析法表明,MIP1对模板分子呈现较好的结合能力和选择性,该印迹聚合物中形成了2类不同的结合位点,离解常数分别为7.43×10-5、3.70×10-3mol/L。将MIP1用于虎杖提取物中POL的固相萃取分离,效果良好。 相似文献
836.
随着化石能源的不断枯竭,以及所产生的环境问题-温室效应及其高硫含量引起的酸雨,迫使人类寻找新型替代能源.在众多可再生能源中,生物质因其碳中性,易获取,作为唯一可转化为液体燃料的可再生资源,正日益受到重视.全球每年生物质产出高达1.7×1011t,其中,含75%的碳水化合物如纤维素、甲壳素和淀粉,20%木质素,其他占 相似文献
837.
建立了凝胶渗透色谱-固相萃取/高效液相色谱法测定水产品中甲基睾酮和己烯雌酚的分析方法。样品经乙醚超声提取和漩涡振荡后以乙酸乙酯-环己烷(1∶1)为流动相进行凝胶渗透色谱净化,再过HLB柱进一步净化,以甲醇-水(72∶28)为流动相,采用高效液相色谱/紫外检测器在254 nm波长下测定,外标法定量。结果显示甲基睾酮和己烯雌酚在0.02~2.0 mg/L质量浓度范围内呈良好的线性关系,线性系数(r)均大于0.999。空白样品在10.0、50.0、200μg/kg 3个加标水平下的平均回收率为84%~93%,相对标准偏差均小于6.0%。甲基睾酮和己烯雌酚的定量下限分别为6.0μg/kg和5.0μg/kg。 相似文献
838.
通过酸洗、硅烷偶联剂表面活化、键合苯甲酰异硫氰酸酯对蒙脱土进行改性,制得新型固相萃取(SPE)材料。 采用红外光谱、扫描电子显微镜、X射线光电子能谱表征了改性蒙脱土的结构和形貌。 考察了制备的SPE填料对水中As3+、Bi3+、Cu2+、Sb3+、Sn2+和Pb2+的吸附性能,确定了最佳固相萃取条件,对6种金属离子吸附容量分别为10.83、11.92、12.67、10.43、10.01及10.54 mg/g。 通过SPE与电感耦合等离子体质谱联用测定了样品中As3+、Bi3+、Cu2+、Sb3+、Sn2+和Pb2+ 6种重金属离子的含量,检出限分别为0.024、0.013、0.075、0.037、0.011和0.064 μg/L。 相似文献
839.
LiZnPO4的性能与其形貌密切相关,其合成常用的固相法和水热法均无控制其微观形貌的优势。 本文采用改进的沉淀法成功合成了具有棒状结构的LiZnPO4。 利用热重-差热分析仪(TG-DSC)、X射线衍射仪(XRD)、傅里叶变换红外光谱(FTIR)以及场发射扫描电子显微镜(FE-SEM)等技术研究了LiZnPO4形成过程、晶相组成、微观结构和形貌。 同时探究了合成方法、煅烧温度、煅烧时间、酸的种类对LiZnPO4形貌的影响。 结果表明,相比较于固相法,以醋酸为原料的改进沉淀法不仅可以有效降低LiZnPO4的合成温度至500 ℃,而且很容易控制棒状LiZnPO4的形成。 在600 ℃下煅烧2 h后可以获得分散性良好、横截面为矩形、直径约为2 μm的规则棒状LiZnPO4。 此外,对比颗粒状LiZnPO4和棒状LiZnPO4的光响应能力,发现棒状LiZnPO4的光响应能力明显增强。 相似文献
840.
在受阻路易斯酸碱对(FLPs)催化的2,3-二取代2H-1,4-苯并噁嗪氢化反应中,3号位取代基不同会导致反应效率极大改变,因此我们选取反应活性具有较大差别的三种底物作为模型化合物对其反应机理进行了研究,建立了氢化反应势能面.发现当B(C6F5)3与2,3-二苯基2H-1,4-苯并噁嗪或2-甲基-3-苯基2H-1,4-苯并噁嗪混合后,会形成FLPs与路易斯酸碱加合物的混合物.而将B(C6F5)3与2,3-二甲基2H-1,4-苯并噁嗪混合后主要形成没有催化活性的路易斯酸碱加合物,因其能量低于FLPs,在催化体系中不容易转化为FLPs,这导致三种模型化合物在FLPs催化的氢化反应中效率不同.进一步的取代基电子效应及位阻效应计算表明:B(C6F5)3与2-甲基-3-取代2H-1,4-苯并噁嗪混合后形成的路易斯酸碱加合物和FLPs化合物之间稳定性差别源于3位取代基空间位阻不同. 相似文献